Evaluation of Egg Drop Syndrome Virus Fiber Protein as a Vaccine Candidate: In Silico Analysis, Expression, Purification and Its Stability

Document Type : Research Article

Authors

1 Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, , Mazandaran, Iran.

2 Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.

Abstract

The Egg Drop Syndrome Virus (EDSV), an avian adenovirus, triggers a sharp decline in both egg production and quality in infected chickens, leading to substantial economic losses in poultry industry. Previous studies have suggested that the EDSV fiber protein may serve as a candidate for subunit vaccine. The present research focused on the expression, purification, and thermal stability evaluation of recombinant fiber protein as a vaccine against EDSV. Using an in silico approach, we investigated the fiber protein structure and its expression in Escherichia coli (E. coli). We also evaluated the thermal stability of the expressed protein. The protein was expressed predominantly as soluble trimeric proteins in E. coli and purified using nickel-affinity purification method, yielding approximately 15 mg/L of purified protein. Structural analysis using immunological and bioinformatics tools Confirmed retention of the native trimeric conformation in the recombinant protein. Based on the thermal stability evaluation on this recombinant protein, the protein showed good thermal stability, highlighting its potential as a subunit vaccine candidate for a vaccine against EDSV.

Keywords

Main Subjects


1.    Benkő M, Aoki K, Arnberg N, Davison AJ, Echavarría M, Hess M, et al. ICTV Virus Taxonomy Profile: Adenoviridae 2022. J Gen Virol. 2022;103(3).Doi: 10.1099/jgv.0.001721.
2.    Cha SY, Kang M, Moon OK, Park CK, Jang HK. Respiratory disease due to current egg drop syndrome virus in Pekin ducks. Vet Microbiol. 2013;165(3-4):305-11. Doi: 10.1016/j.vetmic.2013.04.004.
3.    Swayne DE BM, Logue CM, McDougald LR, Nair V, Suarez DL. Diseases of Poultry. 14ed: Wiley-Blackwell; 2020.
4.    San Martín C. Latest insights on adenovirus structure and assembly. Viruses. 2012;4(5):847-77.Doi: 10.3390/v4050847.
5.    Song Y, Wei Q, Liu Y, Feng H, Chen Y, Wang Y, et al. Unravelling the receptor binding property of egg drop syndrome virus (EDSV) from the crystal structure of EDSV fiber head. Int J Biol Macromol. 2019;139:587-95. Doi: 10.1016/j.ijbiomac.2019.08.005.
6.    Graham BS, Gilman MSA, McLellan JS. Structure-based vaccine antigen design. Annu Rev Med. 2019;70:91-104. Doi:10.1146/annurev-med-121217-094234.
7.    Fingerut E, Gutter B, Gallili G, Michael A, Pitcovski J. A subunit vaccine against the adenovirus egg-drop syndrome using part of its fiber protein. Vaccine. 2003;21(21-22):2761-6. Doi: 10.1016/s0264-410x(03)00117-8.
8.    Alexander DJ. An overview of the epidemiology of avian influenza. Vaccine. 2007;25(30):5637-44.
9.    Li D, Huang Z, Zhong J. Hepatitis C virus vaccine development: old challenges and new opportunities. Natl Sci Rev. 2015;2(3):285-95. Doi:10.1093/nsr/nwv040.
10.    Advances in poultry vaccines: leveraging biotechnology for improving vaccine development, stability, and delivery. Vaccines (Basel). 2024;12(2). Doi:10.3390/vaccines12020134.
11.    Hein R, Koopman R, Garcia M, Armour N, Dunn JR, Barbosa T, et al. Review of poultry recombinant vector vaccines. Avian Dis. 2021;65(3):438-52. Doi:10.1637/0005-2086-65.3.438.
12.    Plotkin S, Robinson JM, Cunningham G, Iqbal R, Larsen S. The complexity and cost of vaccine manufacturing - An overview. Vaccine. 2017;35(33):4064-71. Doi: 10.1016/j.vaccine.2017.06.003.
13.    Farhadi T, Nezafat N, Ghasemi Y, Karimi Z, Hemmati S, Erfani N. Designing of complex multi-epitope peptide vaccine based on omps of Klebsiella pneumoniae: an in silico approach. Int J Pep Res Therap. 2015;21:325-41. Doi:10.1007/s10989-015-9461-0.
14.    Al-Zayadi FQJ, Shakir AS, Kareem AS, Ghasemian A, Behmard E. Design of a novel multi-epitope vaccine against Marburg virus using immunoinformatics studies. BMC Biotechnology. 2024;24(1):45.Doi: 10.1186/s12896-024-00873-2.
15.    Hensley LE, Mulangu S, Asiedu C, Johnson J, Honko AN, Stanley D, et al. Demonstration of cross-protective vaccine immunity against an emerging pathogenic Ebolavirus Species. PLoS Pathog. 2010;6(5):e1000904.Doi: 10.1371/journal.ppat.1000904.
16.    Saadh MJ, Ghadimkhani T, Soltani N, Abbassioun A, Daniel Cosme Pecho R, Taha A, et al. Progress and prospects on vaccine development against monkeypox infection. Microb Pathog. 2023;180:106156.Doi: 10.1016/j.micpath.2023.106156.
17.    Ko J, Park H, Heo L, Seok C. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res. 2012;40 (Web Server issue):W294-7.Doi: 10.1093/nar/gks493.
18.    Song Y, Wei Q, Liu Y, Bai Y, Deng R, Xing G, et al. Development of novel subunit vaccine based on truncated fiber protein of egg drop syndrome virus and its immunogenicity in chickens. Virus Res. 2019;272:197728.Doi: 10.1016/j.virusres.2019.197728.
19.    Lobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Fact. 2012;11:56.
20.    Moyle PM, Toth I. Modern subunit vaccines: development, components, and research opportunities. ChemMedChem. 2013;8(3):360-76.Doi: 10.1002/cmdc.201200487.
21.    Nogales E, Scheres SH. Cryo-EM: A unique tool for the visualization of macromolecular complexity. Mol Cell. 2015;58(4):677-89.Doi:10.1016/j.molcel.2015.02.019.
22.    Schachner A, Matos M, Grafl B, Hess M. Fowl adenovirus-induced diseases and strategies for their control - a review on the current global situation. Avian Pathol. 2018;47(2):111-26.Doi: 10.1080/03079457.2017.1385724.
23.    Sen TZ, Jernigan RL, Garnier J, Kloczkowski A. GOR V server for protein secondary structure prediction. Bioinformatics. 2005;21(11):2787-8.Doi: 10.1093/bioinformatics/bti408. 
24.    Buchan DWA, Jones DT. The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res. 2019;47(W1):W402-7.Doi: 10.1093/nar/gkz297.
25.    Baek M, Park T, Heo L, Park C, Seok C. GalaxyHomomer: a web server for protein homo-oligomer structure prediction from a monomer sequence or structure. Nucleic Acids Res. 2017;45(W1):W320-4.Doi: 10.1093/nar/gkx246.
26.    Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10(6):845-58.Doi: 10.1038/nprot.2015.053.
27.    Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat Methods. 2015;12(1):7-8.Doi: 10.1038/nmeth.3213.
28.    Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein 10.1002/pro.3330.
29.    Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35(Web Server issue):W407-10.Doi: 10.1093/nar/gkm290.
30.    Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 2007;8(1):4. Doi:10.1186/1471-2105-8-4.
31.  Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, et al. The The immune epitope database (IEDB): 2018 update. Nucleic Acids Res. 2019;47(D1):D339-43. Doi:10.1093/nar/gky1006.
32.    Yao B, Zhang L, Liang S, Zhang C. SVMTriP: a method to predict antigenic epitopes using support vector machine to integrate tri-peptide similarity and propensity. PLoS One. 2012;7(9):e45152.Doi: 10.1371/journal.pone.0045152.
33.    Jespersen MC, Peters B, Nielsen M, Marcatili P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 2017;45(W1):W24-9.Doi: 10.1093/nar/gkx346.
34.    Karosiene E, Lundegaard C, Lund O, Nielsen M. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics. 2012;64(3):177-86. Doi: 10.1007/s00251-011-0579-8.
35.    Andreatta M, Karosiene E, Rasmussen M, Stryhn A, Buus S, Nielsen M. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Immunogenetics. 2015;67(11-12):641-50.Doi: 10.1007/s00251-015-0873-y.
36.    Valdivia-Olarte H, Requena D, Ramirez M, Saravia LE, Izquierdo R, Falconi-Agapito F, et al. Design of a predicted MHC restricted short peptide immunodiagnostic and vaccine candidate for Fowl adenovirus C in chicken infection. Bioinformation. 2015;11(10):460-5. Doi: 10.6026/97320630011460.
37.    Thomsen M, Lundegaard C, Buus S, Lund O, Nielsen M. MHCcluster, a method for functional clustering of MHC molecules. Immunogenetics. 2013;65(9):655-65.Doi: 10.1007/s00251-013-0714-9.
38.    Lorenz R, Bernhart SH, Höner Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, et al. ViennaRNA Package 2.0. Algorithms Mol Biol. 2011;6:26.Doi: 10.1186/1748-7188-6-26.
39.    Grote A, Hiller K, Scheer M, Munch R, Nortemann B, Hempel DC, et al. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 2005;33(Web Server issue):W526-31.Doi: 10.1093/nar/gki376.
40.    Green MR, Sambrook J. Molecular cloning: a laboratory manual 4th ed: Cold Spring Harbor Laboratory Pres; 2012.
41.    Studier FW. Stable expression clones and auto-induction for protein production in E. coli. Methods Mol Biol. 2014;1091:17-32. Doi: 10.1007/978-1-62703-691-7_2.
CAPTCHA Image
Volume 17, Issue 4 - Serial Number 41
We are making progress on the issue
December 2025
Pages 39-50
  • Receive Date: 11 June 2025
  • Revise Date: 08 September 2025
  • Accept Date: 01 October 2025