Development of the Respiratory Tract in Red Sokoto Goat ( Capra Hircus ): Histological Perspective

Document Type : Research Article

Authors

Department of Veterinary Anatomy. Faculty of Veterinary Medicine. University of Nigeria, Nsukka, Enugu State, Nigeria.

10.22067/ijvst.2025.90767.1442

Abstract

The foetal development of the respiratory tract in the red Sokoto goat was investigated in this study using morphological techniques. Sections of the respiratory tract were obtained from the foetuses of 40 apparently healthy red Sokoto goats that were grouped into the first term, early 2nd term, late 2nd term, and 3rd term (n = 10/group). Laryngeal glands formed in the early 2nd term and also secreted neutral mucin within the same period, while apical budding and proliferation of the naïve epithelium led to the formation of stratified squamous epithelium just at the beginning of the 3rd term. The trachea consisted of a bi-stratified epithelium at foetal days (FD) 53 and later became ciliated pseudostratified columnar epithelium during the early 3rd term. At FD 102, the glandular epithelia contained bluish-stained areas, while the glandular lumina contained acidic mucins. The lungs of red Sokoto goats were at the pseudo-glandular stage at FD 54, canaliculi stage between FDs 71-76, terminal sac stage between FDs 76 – 104, and alveolar stage from FD 129. The structural changes in the respiratory tract of this breed are essential changes needed for neo-natal and post-natal functions. The lungs were structurally mature in the 3rd term and could support the animal even in preterm kids.

Keywords

Main Subjects


1.    Mourad M, Gbanamou G, Balde IB. Performance of West African Dwarf goats under the extensive system of production in Faranah Guinea. Proc of the 7th International Conference on Goats. 2000 May 15-21; France.  227-230.
2.    Adamu H, Ma'aruf BS, Shuaibu A, Umar HA, Maigado AI. Morphometric characteristics of Red Sokoto and Sahel goats in Maigatari Local Government Area of Jigawa State. Nig J Anim Prod. 2020;47(4):15-23. Doi: 10.51791/njap.v47i4.62
3.    Umar AA, Atabo SM (2020). Gross and microscopic skin thickness of Red Sokoto goat evotypes. IJRDO – J Applied Sci. 2020;6(2):1-10.
4.    McGeady TA, Quinn PJ, FitzPatrick ES, Ryan MT. Veterinary Embryology. Oxford: Blackwell Publishing Ltd; 2006.
5.    Kishimoto K, Morimoto M. Mammalian tracheal development and reconstruction: insights from in vivo and in vitro studies. Dev. 2021;148(13):192. Doi: 10.1242/dev.198192.
6.    Rawlins EL. The building blocks of mammalian lung development. Dev. Dyn. 2010;240(3):463-476. Doi: 10.1002/dvdy.22482
7.    Cardoso WV, Lu J (2006). Regulation of early lung morphogenesis: questions, facts and controversies. Dev. 2006;133:1611-1624.Doi: 10.1242/dev.02310
8.    Goss AM, Tian Y, Tsukiyama T, Cohen ED, Zhou D, Lu MM, Yamaguchi TP, Morrisey EE. Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev Cell. 2009;17:290-298.Doi: 10.1016/j.devcel.2009.06.005
9.    Whitsett JA, Matsuzuki Y. Transcriptional regulation of perinatal lung maturation. Pediat. Clin N. 2006;53:873-887.Doi: 10.1016/j.pcl.2006.08.009
10.    Yin Z, Gonzales L, Kolla V, Rath N, Zhang Y, Lu MM, Kimura S, Ballard PL, Beers MF, Epstein JA, Morrisey EE. Hop functions downstream of Nkx2.1 and GATA6 to mediate HDAC-dependent negative regulation of pulmonary gene expression. Am. J. Physiol. Lung Cell. Mol Physiol. 2006;291: 191-199. Doi: 10.1152/ajplung.00385.2005
11.    Morrisey EE, Hogan BLM. Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell. 2010;18(1):8-23. Doi: 10.1016/j.devcel.2009.12.010.
12.    Drozdowska J, Cousens C, Finlayson J, Collie D, Dagleish MP. Structural development, cellular differentiation and proliferation of the respiratory epithelium in the bovine fetal lung. J Comp Pathol. 2016;154(1):42-56. Doi: 10.1016/j.jcpa.2015.11.002
13.    Alcorn DG, Adamson TM, Maloney JE, Robinson PM. A morphologic and morphometric analysis of fetal lung development in the sheep. Anat Rec. 1981;201:655-657.Doi: 10.1002/ar.1092010410.
14.    Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR. Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. Am J Pathol. 2004;164(2):577-588.Doi: 10.1016/S0002-9440(10)63147-1. 
15.    Ruysseveldt E, Martens K, Steelant B. Airway basal cells, protectors of epithelial walls in health and respiratory diseases. Front Allergy 2021;2:787128. Doi: 10.3389/falgy.2021.787128.Doi: 10.3389/falgy.2021.787128.
16.    M’Boneko V, Merker HJ. Development and morphology of the periderm of mouse embryos (days 9–12 of gestation) Acta Anat. 1988;133:325-336.Doi: 10.1159/000146662.
17.    Kim DH, Xing T, Yang Z, Dudek R, Lu Q, Chen YH. Epithelial mesenchymal transition in embryonic development, tissue repair and cancer: a comprehensive overview. J Clin Med. 2017;7(1):1. Doi: 10.3390/jcm7010001. Doi: 10.3390/jcm7010001.
18.    Prakash M, Johnny JC. Whats special in a child's larynx? J Pharm Bioallied Sci. 2015; 7(Suppl 1):S55-8. Doi: 10.4103/0975-7406.155797.
19.    Hrelec C, Zhang E. Anatomy and physiology of phonation. Int J Head Neck Surg. 2021;12(4):125-130.
20.    Nita LM, Battlehner CN, Ferreira MA, Imamura R, Sennes LU, Caldini EG, Tsuji DH. The presence of a vocal ligament in fetuses: a histochemical and ultrastructural study. J Anat. 2009;215(6):692-97. Doi: 10.1111/j.1469-7580.2009.01146.x.
21.    Jadcherla SR, Hogan WJ, Shaker R. Physiology and pathophysiology of glottic reflexes and pulmonary aspiration: From neonates to adults. Sem Respir Crit Care Med. 2010;31: 554-60.Doi: 10.1055/s-0030-1265896.
22.    Stark JM, Mueller GA. Lung defenses: intrinsic, innate, and adaptive. In: Wilmott RW, Boat TF, Bush A, Chernick V, Deterding RR, Kendig FR (Eds), Chernick's Disorders of the Respiratory Tract in Children. W.B. Saunders; 2012.
23.    Bhattacharyya R, Baishya G. Histomorphological development of lung in perinatal goat. Indian J Anim Sci. 2013;65(12):1296-1300.
24.    Greenough A. Factors adversely affecting lung growth. Paediatr Respir Rev. 2000;1(4):314-20. Doi: 10.1053/prrv.2000.0070.
25.    Schittny JC. Development of the lung. Cell Tissue Res. 2017;367:427–44. Doi: 10.1007/s00441-016-2545-0.
26.    McGowan SE. The formation of pulmonary alveoli. The Lung, Elsevier. 2014;65-84. Doi:10.1016/b978-0-12-799941-8.00004-3.
27.    Maynard RL, Downes N. Anatomy and histology of the laboratory rat in toxicology and biomedical research. Elsevier: Academic Press; 2019. 
28.    Morgenroth K, Ebsen M. Anatomy. Papadakos PJ, Lachmann B (Eds), Laraine Visser-Isles. Mechanical Ventilation. W.B. Saunders; 2008.
29.    Barth K, Bläsche R, Kasper M. T1alpha/podoplanin shows raft-associatd distribution in mouse lung alveolar epithelial E10 cells. Cell Physiol Biochem. 2010;25:103-12.Doi: 10.1159/000272065.
30.    Egwu OC, Samuel UC, Philip BD, Okekeaji U, Eze CC. Evaluation of microbial loads, parasites and antinutrient factors in Talinum triangulare grown on sewage dump site in university of Nigeria, Nsukka Nigeria. IOSR J Environ Sci Toxicol Food Technol. 2019;13(5):51-58.
31.    Gall CF, Stier CH, Frahm K. Age estimation of goat fetus. Small Rum Res. 1994;14:91-94.Doi: 10.1016/0921-4488(94)90016-7.    
32.    Sheehan D, Hrapchak B. Theory and practice of histotechnology (2nd Ed). Battelle Press; 1980.
33.    Mepham BL. Theory and practice of histological techniques. In J. D. Bancroft & A. Stevens (Eds). Churchill Livingstone: Ediburgh; 1991. Doi: 10.1002/path.1711640316.
CAPTCHA Image