Computational Evaluation of B Cell Epitope of 37 kDa Outer Membrane Protein H (OmpH) Pasteurella multocida Type B from Nusa Tenggara Timur (NTT), Indonesia

Document Type : Research Article


1 Airlangga Disease Prevention and Research Center, Universitas Airlangga, Indonesia.

2 Laboratory of Bacteriology and Mycology, Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Indonesia.


HS is still a frequently reported endemic disease, with outbreaks in Indonesia. HS vaccines distributed in Indonesia exhibit various limitations. This study computationally evaluated the B-cell epitope of the 37-kDa OmpH derived from the amino acid sequence of Pasteurella multocida from the NTT and Katha strains and compared the epitopes of the two strains. Amino acid sequences were obtained from NCBI and analyzed for multiple sequence alignment, and homology was analyzed using the BLASTp program at NCBI. Epitope prediction was performed using the IEDB B-cell epitope and ABCPred prediction tools. The VaxiJen v.2 online platform was used for antigenicity analysis, and IEDB was used for epitope conservancy analysis. The results of the homology analysis revealed that local NTT isolates had a high (>95%) identity with the Katha strain and isolates from China, India, Iran, Japan, and the USA. The epitope predictions from both methods were cross-checked, overlapping epitopes were shortlisted, and only five epitopes were predicted. Among the five, one epitope, ALEVGLN, appeared to be antigenic to both NTT and Katha strains. The antigenic sequence of 37 kDa OmpH can be used for peptide-based vaccine development and immunotherapeutic design.


Main Subjects

CC- by

1.    Prihandini  SS,  Noor  SM,  Kusumawati  A.  2017. Deteksi  serotipe,  karakterisasi  molekuler  dan  studi  kekerabatan  genetik  isolat lokal Pasteurella multocide. JITV 22(2): 91-99. DOI: 10.14334/jitv.v22i2.1630.
2.    Almoheer R, Abd Wahid ME, Zakaria HA, Jonet MAB, Al-shaibani MM, Al-Gheethi A, Addis SNK. 2022. Spatial, Temporal, and Demographic Patterns in the Prevalence of Hemorrhagic Septicemia in 41 Countries in 2005–2019: A Systematic Analysis with Special Focus on the Potential Development of a New-Generation Vaccine. Vaccines. 10(2): 315. DOI: 10.3390/vaccines10020315
3.    [WOAH] World Organization of Animal Health. 2022. World Animal Health Information System (Surveillance and control measures: Hemorrhagic Septicemia). Available online: [accessed 11 June 2022]
4.    Muenthaisong A, Nambooppha B, Rittipornlertrak A, Tankaew P, Varinrak T, Muangthai K, Atthikanyaphak K, Sawada T, Sthitmatee N. 2020. An Intranasal Vaccination with a Recombinant Outer Membrane Protein H against Haemorrhagic Septicemia in Swamp Buffaloes. Vet Med Int. 2020 May 26;2020:3548973. DOI: 10.1155/2020/3548973. 
5.    Shome R, Deka RP, Sahay S, Grace D, Lindahl JF. 2019. Seroprevalence of hemorrhagic septicemia in dairy cows in Assam, India. Infect Ecol Epidemiol. 9(1):1604064. DOI: 10.1080/20008686.2019.1604064
6.    Clemmons EA, Alfson KJ, Dutton JW 3rd. 2021. Transboundary Animal Diseases, an Overview of 17 Diseases with Potential for Global Spread and Serious Consequences. Animals (Basel). 11(7):2039. DOI: 10.3390/ani11072039.
7.    Noor SM, Prihandani SS, Desem MI, Purba HHS and Andriani. 2021. Antibody response in cattle after local isolate SE vaccine administration. IOP Conf. Series: Earth and Environmental Science. 860 012071. DOI:10.1088/1755-1315/860/1/012071
8.    Nasution, SS, Azfirman LP, Hutagaol NM, Azizi RA. 2021. Investigasi Kasus Septicaemia Epizootica (SE) pada Ternak Kerbau dan Sapi di Kabupaten Aceh Singkil. Buletin Veteriner Tahun 2021 Edisi 2 URI:
9.    Narcana IK, Suardana IW, Besung INK. 2020 Molecular characteristic of Pasteurella multocida isolates from Sumba Island at East Nusa Tenggara Province, Indonesia. Veterinary World, 13(1): 104-109. DOI:
10.    Berek HSD, Nugroho WS, Wahyuni AETH. 2015. Protektivitas Sapi di Kabupaten KupangTerhadap Penyakit Ngorok (Septicaemia Epizootica). J. Vet.16 (2): 167-173. URL:
11.    Tanwar H, Yadav AP, Brijbhushan, Shweta, Singh SB, et al. (2016) Immunity against Pasteurella multocida in Animals Vaccinated with Inactivated Pasteurella multocida and Herbal Adjuvant ‘DIP-HIP’. J Vaccines Immun 2(1): 010-014. DOI: 10.17352/jvi.000014
12.    Herliani, Abrani Sulaiman, and M. Ilmi Hidayat. 2020. Potency of Cell Wall Protein of Pasteurella multocida as Hemorrhagic Septicemia Vaccine on Swamp Buffaloes Journal of Wetlands Environmental Management. 8(1): 33–44. DOI: 10.20527/10.20527/jwem.v8i1.200 
13.    Varinrak T, Poolperm P, Sawada T, Sthitmatee N. 2017. Cross-protection conferred by immunization with an rOmpH-based intranasal fowl cholera vaccine. Avian Pathol. 46(5):515-525. DOI: 10.1080/03079457.2017.1321105. 
14.    Ahmad TA, Rammah SS, Sheweita SA, Haroun M, El-Sayed LH. 2014. Development of immunization trials against Pasteurella multocida. Vaccine. 32(8): 909-917. DOI: 10.1016/j.vaccine.2013.11.068.
15.    Joshi, S., Tewari, K. & Singh, R. (2013). Comparative immunogenicity and protective efficacy of different preparations of outer membrane proteins of Pasteurella multocida (B:2) in a mouse model.. Veterinarski arhiv, 83 (6), 665-676. Retrieved from
16.    Okay S, Özcengiz E, Gürsel I, Özcengiz G. 2012. Immunogenicity and protective efficacy of the recombinant Pasteurella lipoprotein E and outer membrane protein H from Pasteurella multocida A:3 in mice. Res Vet Sci. 93(3):1261-5. DOI: 10.1016/j.rvsc.2012.05.011. 
17.    Muangthai K, Tankaew P, Varinrak T, Uthi R, Rojanasthien S, Sawada T, Sthitmatee N. 2017. Intranasal immunization with a recombinant outer membrane protein H based Haemorrhagic septicemia vaccine in dairy calves. J Vet Med Sci. 80(1):68-76. DOI: 10.1292/jvms.17-0176. 
18.    Maulana FK, Handijatno D, Plumeriastuti H, Ernawati R, Tyasningsih W, and Mufasirin. 2019. Sequence Homology and Epitope Prediction of 37 kDa Outer Membrane Protein H(ompH) Gene of Pasteurella multocida Type B Isolate from Nusa Tenggara Timur (NTT). Indian Journal of Public Health Research & Development. 10(12): 1708-1713. DOI:10.37506/v10/i12/2019/ijphrd/192109
19.     Potocnakova L, Bhide M, Pulzova LB. 2016. An Introduction to B-Cell Epitope Mapping and In Silico Epitope Prediction. J Immunol Res. 6:6760830. doi: 10.1155/2016/6760830. Muenthaisong A, Rittipornlertrak A, Nambooppha B, Tankaew P, Varinrak T, Pumpuang M, Muangthai K, Atthikanyaphak K, Singhla T, Pringproa K, Punyapornwithaya V, Sawada T, Sthitmatee N. 2021. Immune response in dairy cattle against combined foot and mouth disease and haemorrhagic septicemia vaccine under field conditions. BMC Vet Res. 7(1):186. DOI: 10.1186/s12917-021-02889-8.
20.    TopuzoĞullari M, Acar T, Pelİt Arayici P, UÇar B, UĞurel E, Abamor EŞ, ArasoĞlu T, Turgut-Balik D, Derman S. 2020. An insight into the epitope-based peptide vaccine design strategy and studies against COVID-19. Turk J Biol. 44(3):215-227. DOI: 10.3906/biy-2006-1. 
21.    Ganguly B. 2016. Computational Prediction of Immunodominant Epitopes on Outer Membrane Protein (Omp) H of Pasteurella multocida Toward Designing of a Peptide Vaccine. Methods Mol Biol. 2016;1404:51-57. DOI: 10.1007/978-1-4939-3389-1_3.
22.    Pearson WR. 2013. An introduction to sequence similarity ("homology") searching. Curr Protoc Bioinformatics.  3:3.1. DOI: 10.1002/0471250953.bi0301s42.
23.    Ghaffar A, Tariq A. 2016. In-silico analysis of Pasteurella multocida to identify common epitopes between fowl, goat and buffalo. Gene. 580(1): 58-66. DOI:10.1016/j.gene.2016.01.020.
24.    Sanchez-Trincado JL, Gomez-Perosanz M, Reche PA. 2017. Fundamentals and Methods for T- and B-Cell Epitope Prediction. J Immunol Res. 2017:2680160. DOI: 10.1155/2017/2680160. 
25.    Oany AR, Emran AA, Jyoti TP. 2014. Design of an epitope-based peptide vaccine against spike protein of human coronavirus: an in silico approach. Drug Des Devel Ther. 2014 Aug 21;8:1139-49. DOI: 10.2147/DDDT.S67861.
26.    Khan MT, Islam R, Jerin TJ, Mahmud A, Khatun S, Kobir A, et al. (2021). Immunoinformatics and molecular dynamics approaches: Next generation vaccine design against West Nile virus. PLoS ONE 16(6): e0253393. DOI: 10.1371/journal.pone.0253393
27.    Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 2007 Jan 5;8:4. DOI: 10.1186/1471-2105-8-4.
28.    Wattimena MN, Wijanarka W. 2022 In Silico Analysis Prediction of B-Cell Epitope as a Vaccine Candidate for SARS-CoV-2 B.1.617.2 (Delta) Variant. Journal of Biomedicine and Translational Research [Online]. (1):7-15. DOI:10.14710/jbtr.v1i1.13113
29.    Bui H-H, Sidney J, Li W, Fusseder N, Sette A. (2007). Development of an Epitope ConservancyAnalysis Tool to Facilitate the Design of EpitopeBased Diagnostics and Vaccines. BMC Bioinformatics 8:361. DOI: 10.1186/1471-2105-8-361
30.    Azam F, Saad M, Rahim R, Chumnanpoen P, E-kobon T, Othman S. 2020. Antigenic outer membrane proteins prediction of Pasteurella multocida serotype B:2. AsPac J. Mol. Biol. Biotechnol. 28 (4) : 102-116. DOI: 10.35118/apjmbb.2020.028.4.
31.    Maulana FK, Handijatno D, Plumeriastuti H, Ernawati R, Tyasningsih W, Mufasirin. Sequence Homology and Epitope Prediction of 37 kDa Outer Membrane Protein H(Omph) Gene of Pasteurella multocida Type B Isolate from Nusa Tenggara Timur (NTT). Indian Journal of Public Health Research and Development. 2019 Dec;10(12):1708-1713. DOI: 10.37506/v10/i12/2019/ijphrd/192109
32.    Nouri MAA, Almofti YA, Abd-elrahman KA, & Eltilib EEM. 2019. Identification of Novel Multi Epitopes Vaccine against the Capsid Protein (ORF2) of Hepatitis E Virus. American Journal of Infectious Diseases and Microbiology. 7(1): 26-42. DOI: 10.12691/ajidm-7-1-5.
Volume 16, Issue 1 - Serial Number 34
This issue XML files are being prepared.
February 2024
Pages 19-26
  • Receive Date: 27 April 2023
  • Revise Date: 06 January 2024
  • Accept Date: 06 January 2024