Isolation, Antimicrobial Resistance, and Virulence Genes of Thermophilic Campylobacter Species from Backyard Ducks in Amol, Northern Iran

Document Type : Research Article


1 DVSc Student of Avian Health and Diseases, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

2 Department of Livestock, Poultry and Aquatic Animal Health, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

3 Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

4 Department of Pathobiology, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran.


Domestic poultry are considered natural reservoirs for the transmission of Campylobacter spp., mainly C. jejuni and C. coli, to other birds and humans. This study aimed to determine the Campylobacter infection status in backyard ducks in Iran. A total of 100 cloacal swabs were obtained from apparently healthy backyard ducks in different rural areas of Amol, a city in northern Iran. Bacterial isolation was based on traditional culture procedures, and genus and species identification were performed using an mPCR. All isolates were examined for antimicrobial resistance to seven antibiotics by Kirby Bauer’s disk diffusion test. The virulence-associated genes cadF, iamA, pldA, cdtA, cdtB, cdtC, and wlaN were detected as well. Out of the 27 Campylobacter isolates recovered, 19 (70.4%) were C. coli, and 3 (11.1%) were C. jejuni. The remaining five isolates (18.5%) were not identified. All (100%) isolates showed resistance to ciprofloxacin. Most isolates were resistant to ampicillin, tetracycline, and nalidixic acid. The resistance rate to amoxicillin-clavulanic acid and erythromycin was moderate but was relatively low to gentamicin. Moreover, over two-thirds of the isolates were MDR. All virulence genes, except iamA, were variably detected. The cadF and pldA genes had the highest (92.6%) and lowest (7.4%) positivity rates, respectively. In addition, a statistically significant association was observed between Campylobacter spp. and most of the critical virulence genes (p < 0.05). Our findings imply that backyard ducks should be paid attention to as a major source of human campylobacteriosis.


Main Subjects

1.    Zhang Q, Sahin O. Campylobacteriosis. In: Swayne DE, Boulianne M, Logue CM, McDougald LR, Nair V, Suarez DL, editors. Diseases of poultry. 14th ed. Hoboken, NJ: John Wiley & Sons; 2020.
2. Sahin O, Kassem II, Shen Z, Lin J, Rajashekara G, Zhang Q. Campylobacter in poultry: ecology and potential interventions. Avian Dis. 2015 Jun;59(2):185-200. doi: 10.1637/11072-032315-Review. 
3. Han X, Guan X, Zeng H, Li J, Huang X, Wen Y, et al. Prevalence, antimicrobial resistance profiles and virulence-associated genes of thermophilic Campylobacter spp. isolated from ducks in a Chinese slaughterhouse. Food Control. 2019 Apr;104(2):157-166.doi: 10.1016/j.foodcont.2019.04.038.
4. Wei B, Cha SY, Kang M, Roh JH, Seo HS, Yoon RH, et al. Antimicrobial susceptibility profiles and molecular typing of Campylobacter jejuni and Campylobacter coli isolates from ducks in South Korea. Appl Environ Microbiol. 2014 Dec;80(24):7604-10. doi: 10.1128/AEM.02469-14.
5. Jafari S, Ebrahimi M, Luangtongkum T. The worldwide trend of Campylobacter spp., infection from duck-related isolates and associated phenotypic and genotypic antibiotic resistance, since 1985: identifying opportunities and challenges for prevention and control. Poult Sci. 2021 Aug;100(8):101213. doi: 10.1016/j.psj.2021.101213.
6. Shen Z, Wang Y, Zhang Q, Shen J. Antimicrobial resistance in Campylobacter spp. Microbiol Spectr. 2018 Apr;6(2). doi: 10.1128/microbiolspec.ARBA-0013-2017.
7. Kumar A, Gangaiah D, Torrelles JB, Rajashekara G. Polyphosphate and associated enzymes as global regulators of stress response and virulence in Campylobacter jejuni. World J Gastroenterol. 2016 Sep;22(33):7402-14. doi:10.3748/wjg.v22.i33.7402.
8. Colles FM, Ali JS, Sheppard SK, McCarthy ND, Maiden MCJ. Campylobacter populations in wild and domesticated Mallard ducks (Anas platyrhynchos). Environ Microbiol Rep. 2011 Oct;3(5):574-80.doi:: 10.1111/j.1758-2229.2011.00265.x.
9. McCrackin MA, Helke KL, Galloway AM, Poole AZ, Salgado CD, Marriott BP. Effect of antimicrobial use in agricultural animals on drug-resistant foodborne campylobacteriosis in humans: a systematic literature review. Crit Rev Food Sci Nutr. 2016 Oct; 56(13):2115-32. doi: 10.1080/10408398.2015.1119798.
10. Guirado P, Paytubi S, Miro E, Iglesias-Torrens Y, Navarro F, Cerda-Cuellar M, et al.  Differential distribution of the wlaN and cgtB genes, associated with Guillain-Barré Syndrome, in Campylobacter jejuni isolates from humans, broiler chickens, and wild birds. Microorganisms. 2020 Feb;8(3):325. doi: 10.3390/microorganisms8030325.  
11. Adzitey F, Rusul G, Huda N, Cogan T, Corry J. Prevalence, antibiotic resistance and RAPD typing of Campylobacter species isolated from ducks, their rearing and processing environments in Penang, Malaysia. Int J Food Microbiol. 2012 Mar;154(3):197-205. doi:10.1016/j.ijfoodmicro.2012.01.006. 
12. Wei B, Cha SY, Yoon RH, Kang M, Roh JH, Seo HS, et al. Prevalence and antimicrobial resistance of Campylobacter spp. isolated from retail chicken and duck meat in South Korea. Food Control. 2016 Apr;62:63-8. doi: 10.1016/j.foodcont.2015.10.013.
13. Madsen JM, Zimmermann NG, Timmons J, Tablante NL. Evaluation of Maryland backyard flocks and biosecurity practices. Avian Dis. 2013 Jun;57(2):233-7. doi: 10.1637/10428-101912-Reg.1. 
14. Fani F, Aminshahidi M, Firoozian N, Rafaatpour N. Prevalence, antimicrobial resistance, and virulence-associated genes of Campylobacter isolates from raw chicken meat in Shiraz, Iran. Iran J Vet Res. 2019 Oct;20(4):283-8. doi 10.22099/IJVR.2019.5506.
15. Kafshdouzan K, Ashrafi Tamai I, Pouyan S. Detection of faecal contamination with Campylobacter jujuni and Campylobacter coli in urban ducks in the north of Iran. J. Vet. Res. 2019 Jun;74(2):283-9.doi: 10.22059/jvr.2018.239478.2682.
16. Varga C, Guerin MT, Brash ML, Slavic D, Boerlin P, Susta L. Antimicrobial resistance in Campylobacter jejuni and Campylobacter coli isolated from small poultry flocks in Ontario, Canada: A two year surveillance study. PLoS One. 2019 Aug;14(8):e0221429. doi: 10.1371/journal.pone.0221429. 
17. Jamali H, Ghaderpour A, Radmehr B, Chuan Wei KS, Chai LC, Ismail S. Prevalence and antimicrobial resistance of Campylobacter species isolates in ducks and geese. Food Control. 2015 Apr;50:328-30. doi: 10.1016/j.foodcont.2014.09.016.
18. Wysok B, Sołtysiuk M, Stenzel T. Wildlife waterfowl as a source of pathogenic Campylobacter strains. Pathogens. 2022 Jan;11(2):113. doi: 10.3390/pathogens11020113. 
19. Antilles N, Sanglas A, Cerda-Cuellar M. Free-living waterfowl as a source of zoonotic bacteria in a dense wild bird population area in Northeastern Spain. Transbound Emerg Dis. 2015 Oct;62(5):516-21.doi: 10.1111/tbed.12169. 
20. Ahmed MFEM, El Adawy H, Hotzel H, Tomaso H, Neubauer H, Kemper N, et al. Prevalence, genotyping and risk factors of thermophilic Campylobacter spreading in organic turkey farms in Germany. Gut Pathog. 2016 Jun;8:28. doi: 10.1186/s13099-016-0108-2. 
21. Wysok B, Wojtacka J, Wiszniewska-Łaszczych A, Szteyn J. Antimicrobial resistance and virulence properties of Campylobacter spp. originating from domestic geese in Poland. Animals (Basel). 2020 Apr;10(4):742. doi: 10.3390/ani10040742.
22. Wei B, Kang M. In vitro activity of fosfomycin against Campylobacter isolates from poultry and wild birds. PLoS One. 2018 Jul;13(7):e0200853. doi: 10.1371/journal.pone.0200853. 
23. Mirzaie S, Hassanzadeh M, Bashashati M, Barrin A. Campylobacter occurrence and antimicrobial resistance in samples from ceca of commercial turkeys and quails in Tehran, Iran. International Research Journal of Microbiology. 2011 Oct;2(9):338-42.
24. Suman Kumar M, Ramees TP, Dhanze H, Gupta S, Dubal ZB, Kumar A. Occurrence and antimicrobial resistance of Campylobacter isolates from broiler chicken and slaughter house environment in India. Anim Biotechnol. 2023 Apr;34(2):199-207. doi: 10.1080/10495398.2021.1953514.
25. Tang Y, Fang L, Xu C, Zhang Q. Antibiotic resistance trends and mechanisms in the foodborne pathogen, Campylobacter. Anim Health Res Rev. 2017 Dec;18(2):87-98. doi: 10.1017/S1466252317000135. 
26. Ghoneim NH, Sabry MA, Ahmed ZS, Elshafiee EA. Campylobacter species isolated from chickens in Egypt: molecular epidemiology and antimicrobial resistance. Pakistan J. Zool.  2020 Jun;52(3):917. doi: 10.17582/journal.pjz/20190324080346.
27. Gharbi M, Bejaoui A, Hamrouni S, Arfaoui A, Maaroufi A. Persistence of Campylobacter spp. in poultry flocks after disinfection, virulence, and antimicrobial resistance traits of recovered isolates. Antibiotics (Basel). 2023 May;12(5):890.doi: 10.3390/antibiotics12050890. 
28. Rahimi E, Ameri M. Antimicrobial resistance patterns of Campylobacter spp. isolated from raw chicken, turkey, quail, partridge, and ostrich meat in Iran. Food Control. 2011 Aug; 22(8):1165-70. doi:10.1016/j.foodcont.2011.01.010.
29. Ma L, Wang Y, Shen J, Zhang Q, Wu C. Tracking Campylobacter contamination along a broiler chicken production chain from the farm level to retail in China. Int J Food Microbiol. 2014 Jul;181:77-84. doi: 10.1016/j.ijfoodmicro.2014.04.023. 
30. Post A, Martiny D, van Waterschoot N, Hallin M, Maniewski U, Bottieau E, et al. Antibiotic susceptibility profiles among Campylobacter isolates obtained from international travelers between 2007 and 2014. Eur J Clin Microbiol Infect Dis. 2017 Nov. 36(11):2101-7. doi: 10.1007/s10096-017-3032-6.
31. Qin S, Wang Y, Zhang Q, Chen X, Shen Z, Deng F, et al. Identification of a novel genomic island conferring resistance to multiple aminoglycoside antibiotics in Campylobacter coli. Antimicrob Agents Chemother. 2012 Oct;56(10):5332-9. doi: 10.1128/AAC.00809-12. 
32. Giacomelli M, Salata C, Martini M, Montesissa C, Piccirillo A. Antimicrobial resistance of Campylobacter jejuni and Campylobacter coli from poultry in Italy. Microb Drug Resist. 2014 Apr;20(2):181-8. doi: 10.1089/mdr.2013.0110. 
33. Casagrande Proietti P, Guelfi G, Bellucci S, De Luca  S, Di Gregorio S, Pieramati C, et al. Beta-lactam resistance in Campylobacter coli and Campylobacter jejuni chicken isolates and the association between blaOXA-61 gene expression and the action of β-lactamase inhibitors. Vet Microbiol. 2020 Feb;241:108553. doi: 10.1016/j.vetmic.2019.108553.
34. Tenhagen BA, Alt K, Kasbohrer A, Kollas C, Pfefferkorn B, Naumann S, et al. Comparison of antimicrobial resistance of thermophilic Campylobacter isolates from conventional and organic turkey meat in Germany. Foodborne Pathog Dis. 2020 Dec;17(12):750-7. doi: 10.1089/fpd.2020.2815.
35. Jehanne Q, Benejat L, Ducournau A, Domingues-Martins C, Cousinou T, Bessede E, et al. Emergence of erythromycin resistance methyltransferases in Campylobacter coli strains in France. Antimicrob Agents Chemother. 2021 Oct;65(11):e0112421. doi: 10.1128/AAC.01124-21. 
36. Hadiyan M, Momtaz H, Shakerian A. Prevalence, antimicrobial resistance, virulence gene profile and molecular typing of Campylobacter species isolated from poultry meat samples. Vet Med Sci. 2022 Nov;8(6):2482-93. doi: 10.1002/vms3.944. 
37. Li B, Ma L, Li Y, Jia H, Wei J, Shao D, et al. Antimicrobial resistance of Campylobacter species isolated from broilers in live bird markets in Shanghai, China. Foodborne Pathog Dis. 2017 Feb;14(2):96-102. doi: 10.1089/fpd.2016.2186.
38. Kim J, Park H, Kim J, Kim JH, Jung JI, Cho S, et al. Comparative analysis of aerotolerance, antibiotic resistance, and virulence gene prevalence in Campylobacter jejuni isolates from retail raw chicken and duck meat in South Korea. Microorganisms. 2019 Oct; 7(10):433. doi: 10.3390/microorganisms7100433.
39. Rossler E, Olivero C, Soto LP, Frizzo LS, Zimmermann J, Rosmini MR, et al. Prevalence, genotypic diversity and detection of virulence genes in thermotolerant Campylobacter at different stages of the poultry meat supply chain. Int J Food Microbiol. 2020 Aug;326:108641. doi: 10.1016/j.ijfoodmicro.2020.108641.
40. Ramatla T, Mileng K, Ndou R, Tawana M, Mofokeng L, Syakalima M, et al. Campylobacter jejuni from slaughter age broiler chickens: genetic characterization, virulence, and antimicrobial resistance genes. Int J Microbiol. 2022 May;2022:1713213.doi: 10.1155/2022/1713213.
41. Sierra‑Arguello YM, Perdoncini G, Rodrigues LB, Ruschel Dos Santos L, Apellanis Borges K, Quedi Furian T, et al. Identification of pathogenic genes in Campylobacter jejuni isolated from broiler carcasses and broiler slaughterhouses. Sci Rep. 2021 Feb;11(1):4588. doi: 10.1038/s41598-021-84149-1. 
42. Guk JH, Kim J, Song H, Kim J, An JU, Kim J, et al. Hyper-aerotolerant Campylobacter coli from duck sources and its potential threat to public health: virulence, antimicrobial resistance, and genetic relatedness. Microorganisms. 2019 Nov;7(11):579. doi: 10.3390/microorganisms7110579. 
43. Ghorbanalizadgan M, Bakhshi B, Najar-Peerayeh S. Heterogeneity of cytolethal distending toxin sequence types of Campylobacter jejuni and correlation to invasion/cytotoxicity potential: the first molecular survey from Iran. Microb Pathog. 2018 Jan; 114:213-8. doi: 10.1016/j.micpath.2017.11.035.
44. Oh E, McMullen LM, Chui L, Jeon B. Differential survival of hyper-aerotolerant Campylobacter jejuni under different gas conditions. Front Microbiol. 2017 May; 8:954. doi: 10.3389/fmicb.2017.00954. 
45. Wysok B, Wojtacka J, Kivisto R. Pathogenicity of Campylobacter strains of poultry and human origin from Poland. Int J Food Microbiol. 2020 Dec; 334:108830. doi: 10.1016/j.ijfoodmicro.2020.108830. 
46. Guirado P, Iglesias-Torrens Y, Miro E, Navarro F, Attolini CS, Balsalobre C, et al. Host-associated variability of the cdtABC operon, coding for the cytolethal distending toxin, in Campylobacter jejuni. Zoonoses Public Health. 2022 Dec;69(8):966-77. doi: 10.1111/zph.12994. 
47. Weis AM, Miller WA, Byrne BA, Chouicha N, Boyce WM, Townsend AK. Prevalence and pathogenic potential of Campylobacter isolates from free-living, human-commensal American crows. Appl Environ Microbiol. 2014 Mar;80(5):1639-44. doi: 10.1128/AEM.03393-13. 
48. Ehsannejad F, Sheikholmolooki A, Hassanzadeh M, Shojaei Kavan R, Soltani M. Detection of cytolethal distending toxin (cdt) genes of Campylobacter jejuni and coli in fecal samples of pet birds in Iran. Iran J Vet Med. 2015 Apr;9(1):49-56. doi: 10.22059/IJVM.2015.53233.
49. Redondo N, Carroll A, McNamara E. Molecular characterization of Campylobacter causing human clinical infection using whole-genome sequencing: virulence, antimicrobial resistance and phylogeny in Ireland. PLoS One. 2019 Jul;14(7):e0219088. doi: 10.1371/journal.pone.0219088.
50. Iglesias-Torrens Y, Miro E, Guirado P, Llovet T, Munoz C, Cerda-Cuellar M, et al. Population structure, antimicrobial resistance, and virulence-associated genes in Campylobacter jejuni isolated from three ecological niches: gastroenteritis patients, broilers, and wild birds. Front Microbiol. 2018 Aug;9:1676. doi: 10.3389/fmicb.2018.01676.
51. Hamidian M, Sanaei M, Bolfion M, Dabiri H, Zali MR, Walther-Rasmussen J. Prevalence of putative virulence markers in Campylobacter jejuni and Campylobacter coli isolated from hospitalized children, raw chicken, and raw beef in Tehran, Iran. Can. J. Microbiol. 2011 Feb;57(2):143-8. doi:10.1139/W10-089.
52. Wei B, Kang M, Jang HK. Genetic characterization and epidemiological implications of Campylobacter isolates from wild birds in South Korea. Transbound Emerg Dis. 2019 Jan;66(1):56-65. doi: 10.1111/tbed.12931.
53. Ammar AM, El-Naenaeey EY, El-Malt RMS, El-Gedawy AA, Khalifa E, Elnahriry SS, et al. Prevalence, antimicrobial susceptibility, virulence and genotyping of Campylobacter jejuni with a special reference to the anti-virulence potential of eugenol and beta-resorcylic acid on some multi-drug resistant isolates in Egypt. Animals (Basel). 2020 Dec;11(1):3.doi: 10.3390/ani11010003.
54. Kovacs JK, Cox A, Schweitzer B, Maroti G, Kovacs T, Fenyvesi H, et al. Virulence traits of inpatient Campylobacter jejuni isolates, and a transcriptomic approach to identify potential genes maintaining intracellular survival. Microorganisms. 2020 Apr;8(4):531. doi: 10.3390/microorganisms8040531.
55. Datta S, Niwa H, Itoh K. Prevalence of 11 pathogenic genes of Campylobacter jejuni by PCR in strains isolated from humans, poultry meat and broiler and bovine faeces. J Med Microbiol. 2003 Apr;52:345-8. doi: 10.1099/jmm.0.05056-0.
56. Yamazaki-Matsune W, Taguchi M, Seto K, Kawahara R, Kawatsu K, Kumeda Y, et al. Development of a multiplex PCR assay for identification of Campylobacter coli, Campylobacter fetus, Campylobacter hyointestinalis subsp. hyointestinalis, Campylobacter jejuni, Campylobacter lari and Campylobacter upsaliensis. J Med Microbiol. 2007 Nov;56:1467-73.doi: 10.1099/jmm.0.47363-0. 
57. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2020.
58. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012 Mar;18(3):268-81.doi: 10.1111/j.1469-0691.2011.03570.x. 
59. Carvalho AC, Ruiz-Palacios GM, Ramos-Cervantes P, Cervantes LE, Jiang X, Pickering LK. Molecular characterization of invasive and Noninvasive Campylobacter jejuni and Campylobacter coli isolates. J Clin Microbiol. 2001 Apr;39(4):1353-9.doi: 10.1128/JCM.39.4.1353-1359.2001.
60.    Khoshbakht R, Tabatabaei M, Hosseinzadeh S. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of three lipooligosaccharide-associated genes of Campylobacter jejuni and Campylobacter coli isolated from animal samples. Avicenna J Clin Microb Infec. 2017 Aug;4(3):e11983.doi: 10.5812/ajcmi.11983.
Volume 15, Issue 4 - Serial Number 33
This issue XML files are being prepared.
December 2023
Pages 56-67
  • Receive Date: 21 June 2023
  • Revise Date: 27 October 2023
  • Accept Date: 01 November 2023