Genetic Diversity, Antimicrobial Resistance, and Biofilm-Forming Potential of Equine Fecal Escherichia coli in Northern Iran

Document Type : Research Articles


Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.


This study was carried out to examine the biofilm-forming ability, antimicrobial resistance, frequency of biofilm, and resistance genes, as well as the phylogenic grouping of Escherichia coli isolates originating from equine samples. In total, 157 E. coli strains were isolated from fresh feces samples of healthy horses in northern Iran. The samples were examined in terms of biofilm formation and antimicrobial susceptibility using a microtiter plate and disc-diffusion test, respectively. PCR amplification was adopted to find the genes that confer biofilm formation and resistance to β-lactam, chloramphenicol, tetracyclines, aminoglycosides, quinolones, sulfamethoxazole, and trimethoprim, and for phylogenetic analysis. More than 50% of isolates showed MDR phenotype. The most significant level of resistance was detected for streptomycin (59.87%), followed by trimethoprim-sulfamethoxazole (29.93%) and oxytetracycline (28.66%). Imipenem and norfloxacin were the most potent antibiotics. Phylogenetic groups B1 (46.50%) and A (21.66%) were the most common groups in isolates, followed by C (6.37%), clade I (5.10%), E (4.46%), D (3.82%), and B2 (2.55%). All isolates in phylogroups B2 and D carried all biofilm-related genes. In addition, antimicrobial resistance genes were common in phylogroups B2, D, A, B1, and E. These findings demonstrate that in northern Iran, healthy horses harbor potential extraintestinal pathogenic and MDR E. coli isolates. These animals can be reservoirs for antibiotics-resistant isolates. The obtained data support the current interest regarding antimicrobial resistance, MDR shedding, and managing the use of antimicrobials in veterinary science.


Main Subjects

1.    Melo LC, Oresco C, Leigue L, Netto HM, Melville PA, Benites NR, et al. Prevalence and molecular features of ESBL/pAmpC-producing Enterobacteriaceae in healthy and diseased companion animals in Brazil. Veterinary microbiology2018;221:59-66. Doi:10.1016/j.vetmic.2018.05.017.
2.    Badger S, Abraham S, Saputra S, Trott DJ, Turnidge J, Mitchell T, et al. Relative performance of antimicrobial susceptibility assays on clinical Escherichia coli isolates from animals. Veterinary microbiology2018;214:56-64. Doi:10.1016/j.vetmic.2017.12.008.
3.    Herrero M, Grace D, Njuki J, Johnson N, Enahoro D, Silvestri S, et al. The roles of livestock in developing countries. Animal2013;7(s1):3-18. Doi:10.1017/S1751731112001954.
4.    Wolny-Koładka K, Lenart-Boroń A. Antimicrobial resistance and the presence of extended-spectrum beta-lactamase genes in Escherichia coli isolated from the environment of horse riding centers. Environmental Science and Pollution Research2018;25(22):21789-800.Doi:10.1007/s11356-018-2274-x.
5.    Johns I, Verheyen K, Good L, Rycroft A. Antimicrobial resistance in faecal Escherichia coli isolates from horses treated with antimicrobials: A longitudinal study in hospitalised and non-hospitalised horses. Veterinary microbiology2012;159(3-4):381-9. Doi:10.1016/j.vetmic.2012.04.010.
6.    Beard L. Multiple drug resistant bacteria in equine medicine: An emerging problem. Equine Veterinary Education2010;22(6):287-9.
7.    Damborg P, Marskar P, Baptiste KE, Guardabassi L. Faecal shedding of CTX-M-producing Escherichia coli in horses receiving broad-spectrum antimicrobial prophylaxis after hospital admission. Veterinary microbiology2012;154(3-4):298-304. Doi:10.1016/j.vetmic.2011.07.005.
8.    Chung YS, Song JW, Kim DH, Shin S, Park YK, Yang SJ, et al. Isolation and characterization of antimicrobial-resistant Escherichia coli from national horse racetracks and private horse-riding courses in Korea. Journal of veterinary science2016;17(2):199-206. Doi:10.4142/jvs.2016.17.2.199.
9.    Von Wintersdorff CJ, Penders J, Van Niekerk JM, Mills ND, Majumder S, Van Alphen LB, et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Frontiers in microbiology2016;7:173. Doi:10.3389/fmicb.2016.00173.
10.    Kaspar U, von Lützau K, Schlattmann A, Rösler U, Köck R, Becker K. Zoonotic multidrug-resistant microorganisms among non-hospitalized horses from Germany. One Health2019;7:100091. Doi:10.1016/j.onehlt.2019.100091.
11.    Vangchhia B, Abraham S, Bell JM, Collignon P, Gibson JS, Ingram PR, et al. Phylogenetic diversity, antimicrobial susceptibility and virulence characteristics of phylogroup F Escherichia coli in Australia. Microbiology2016;162(11):1904-12.
12.    Clermont O, Christenson JK, Denamur E, Gordon DM. The C lermont Escherichia coli phylo‐typing method revisited: improvement of specificity and detection of new phylo‐groups. Environmental microbiology reports2013;5(1):58-65. Doi:10.1111/1758-2229.12019.
13.    Erb A, Stürmer T, Marre R, Brenner H. Prevalence of antibiotic resistance in Escherichia coli: overview of geographical, temporal, and methodological variations. European Journal of Clinical Microbiology & Infectious Diseases2007;26(2):83-90. Doi:10.1007/s10096-006-0248-2.
14.    Chuppava B, Keller B, Meißner J, Kietzmann M, Visscher C. Effects of different types of flooring design on the development of antimicrobial resistance in commensal Escherichia coli in fattening turkeys. Veterinary microbiology2018;217:18-24. Doi:10.1016/j.vetmic.2018.02.018.
15.    Ewers C, Bethe A, Semmler T, Guenther S, Wieler L. Extended-spectrum β-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective. Clinical Microbiology and Infection2012;18(7):646-55. Doi:10.1111/j.1469-06912012.03850.x.
16.    Walther B, Tedin K, Lübke-Becker A. Multidrug-resistant opportunistic pathogens challenging veterinary infection control. Veterinary microbiology2017;200:71-8. Doi:10.1016/j.vetmic.2018.05.017.
17.    de Lagarde M, Larrieu C, Praud K, Schouler C, Doublet B, Sallé G, et al. Prevalence, risk factors, and characterization of multidrug resistant and extended spectrum β‐lactamase/AmpC β‐lactamase producing Escherichia coli in healthy horses in France in 2015. Journal of veterinary internal medicine2019;33(2):902-11. Doi:10.1111/jvim.15415.
18.    Allen SE, Boerlin P, Janecko N, Lumsden JS, Barker IK, Pearl DL, et al. Antimicrobial resistance in generic Escherichia coli isolates from wild small mammals living in swine farm, residential, landfill, and natural environments in southern Ontario, Canada. Applied and Environmental Microbiology2011;77(3):882-8. Doi:10.1128/AEM.01111-10.
19.    Maddox T, Clegg P, Diggle P, Wedley A, Dawson S, Pinchbeck G, et al. Cross‐sectional study of antimicrobial‐resistant bacteria in horses. Part 1: Prevalence of antimicrobial‐resistant Escherichia coli and methicillin‐resistant Staphylococcus aureus. Equine veterinary journal2012;44(3):289-96. Doi:10.1111/j.2042-3306.2011.00441.x.
20.    Dolejska M, Duskova E, Rybarikova J, Janoszowska D, Roubalova E, Dibdakova K, et al. Plasmids carrying bla CTX-M-1 and qnr genes in Escherichia coli isolates from an equine clinic and a horseback riding centre. Journal of Antimicrobial Chemotherapy2011;66(4):757-64. Doi:10.1093/jac/dkq500.
21.    Walther B, Klein K-S, Barton A-K, Semmler T, Huber C, Wolf SA, et al. Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Acinetobacter baumannii among horses entering a veterinary teaching hospital: The contemporary" Trojan Horse". PloS one2018;13(1):e0191873. Doi:10.1371/journal.pone.0191873.
22.    Ahmed MO, Clegg PD, Williams NJ, Baptiste KE, Bennett M. Antimicrobial resistance in equine faecal Escherichia coli isolates from North West England. Annals of clinical microbiology and antimicrobials2010;9(1):1-7. Doi:10.1186/1476-0711-9-12.
23.    Sadikalay S, Reynaud Y, Guyomard-Rabenirina S, Falord M, Ducat C, Fabre L, et al. High genetic diversity of extended-spectrum β-lactamases producing Escherichia coli in feces of horses. Veterinary microbiology2018;219:117-22. Doi:10.1016/j.vetmic.2018.04.016.
24.    Sato W, Sukmawinata E, Uemura R, Kanda T, Kusano K, Kambayashi Y, et al. Antimicrobial resistance profiles and phylogenetic groups of Escherichia coli isolated from healthy Thoroughbred racehorses in Japan. Journal of equine science2020;31(4):85-91. Doi:10.1294/jes.31.85.
25.    Moura I, Torres C, Silva N, Somalo S, Igrejas G, Poeta P. Genomic description of antibiotic resistance in Escherichia coli and enterococci isolates from healthy Lusitano horses. Journal of Equine Veterinary Science2013;33(12):1057-63. Doi:10.1016/j.jevs.2013.04.
26.    Bourély C, Cazeau G, Jarrige N, Jouy E, Haenni M, Lupo A, et al. Co-resistance to amoxicillin and tetracycline as an indicator of multidrug resistance in Escherichia coli isolates from animals. Frontiers in microbiology2019;10:2288. Doi:10.3389/fmicb.2019.02288.
27.    Johnson JR, Johnston BD, Delavari P, Thuras P, Clabots C, Sadowsky MJ. Phylogenetic backgrounds and virulence-associated traits of Escherichia coli isolates from surface waters and diverse animals in Minnesota and Wisconsin. Applied and environmental microbiology2017;83(24):e01329-17. Doi:10.1128/AEM.01329-17.
28.    Bortolami A, Zendri F, Maciuca EI, Wattret A, Ellis C, Schmidt V, et al. Diversity, virulence, and clinical significance of extended-spectrum β-lactamase-and pAmpC-producing Escherichia coli from companion animals. Frontiers in microbiology2019;10:1260. Doi:10.3389/fmicb.2019.01260.
29.    Reshadi P, Heydari F, Ghanbarpour R, Bagheri M, Jajarmi M, Amiri M, et al. Molecular characterization and antimicrobial resistance of potentially human pathogenic Escherichia coli strains isolated from riding horses. BMC Veterinary Research;17(1):1-9. Doi:10.1186/s12917-021-02832-x.
30.    Olowe OA, Adefioye OJ, Ajayeoba TA, Schiebel J, Weinreich J, Ali A, et al. Phylogenetic grouping and biofilm formation of multidrug resistant Escherichia coli isolates from humans, animals and food products in South-West Nigeria. Scientific African2019;6:e00158. Doi:10.1016/j.sciaf.2019.e00158.
31.    Abdi HA, Rashki A. Comparison of virulence factors distribution in uropathogenic E. coli isolates from phylogenetic groups B2 and D. Int J Enteric Pathog2014;2(4):1-5. Doi:10.17795/ijep21725.
32.    Chakraborty A, Saralaya V, Adhikari P, Shenoy S, Baliga S, Hegde A. Characterization of Escherichia coli phylogenetic groups associated with extraintestinal infections in South Indian population. Annals of medical and health sciences research2015;5(4):241-6. Doi:10.4103/2014-9248.160192.
33.    Hashemizadeh Z, Kalantar-Neyestanaki D, Mansouri S. Association between virulence profile, biofilm formation and phylogenetic groups of Escherichia coli causing urinary tract infection and the commensal gut microbiota: a comparative analysis. Microbial pathogenesis2017;110:540-5.
34.    Jafari RA, Motamedi H, Maleki E, Ghanbarpour R, Mayahi M, editors. Phylogenetic typing and detection of extended-spectrum β-lactamases in Escherichia coli isolates from broiler chickens in Ahvaz, Iran. Veterinary Research Forum 2016; 7(3): 227–233. Doi:10.1016/j.vetmic.2011.05.007.
35.    Platell JL, Johnson JR, Cobbold RN, Trott DJ. Multidrug-resistant extraintestinal pathogenic Escherichia coli of sequence type ST131 in animals and foods. Veterinary microbiology2011;153(1-2):99-108.Doi:10.1016/j.vetmic.2011.05.007.
36.    Etebarzadeh Z, Oshaghi M, Amir Mozafari N. Evaluation of relationship between phylogenetic typing and antibiotic resistance of uropathogenic Escherichia coli. Journal of Microbial world2012;4(3&4):84-92.
37.    Iranpour D, Hassanpour M, Ansari H, Tajbakhsh S, Khamisipour G, Najafi A. Phylogenetic groups of Escherichia coli strains from patients with urinary tract infection in Iran based on the new Clermont phylotyping method. BioMed research international2015; Article ID 846219.Doi:10.1016/j.vetmic.2011.05.007.
38.    Wayne P. Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing: 30 ed. CLSI supplement M100-S30. Clinical and Laboratory Standards Institute, Wayne, PA.
39.    Asadpour L. Antimicrobial resistance, biofilm-forming ability and virulence potential of Pseudomonas aeruginosa isolated from burn patients in northern Iran. Journal of global antimicrobial resistance2018;13:214-20. Doi:10.1016/j.jgar.2018.01.018.
Volume 15, Issue 2 - Serial Number 31
This issue XML file is being prepared.
July 2023
Pages 19-28
  • Receive Date: 14 January 2023
  • Revise Date: 06 May 2023
  • Accept Date: 07 May 2023
  • First Publish Date: 13 June 2023