Phenotypic and Genotypic Characterization of Colistin Resistance in Escherichia coli Isolated from Bovine Mastitis

Document Type : Research Article


1 Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.

2 Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran.

3 Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.


Mastitis is a global disease occurring in dairy cows, causing notable economic losses. Extensive use of antibiotics could allow the emergence of mobile antimicrobial resistance genes in mastitis-causing pathogens. This study aimed to investigate the prevalence and characterization of colistin resistance genes in E. coli recovered from bovine mastitic milk. A total of 74 E. coli isolates were investigated for antimicrobial resistance. The presence of mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5 plasmid-mediated resistance genes, as the most crucial contributors to resistance to colistin, was examined by Multiplex PCR. Antimicrobial susceptibility patterns of all isolates to the seven most common antibiotics applied in dairy herds, including colistin, ceftriaxone, ampicillin, tetracycline, gentamicin, enrofloxacin, and trimethoprim-sulfamethoxazole were determined by the DD test. Among all samples, 70 isolates (94.6%) were resistant to colistin. In the MIC test, all isolates were also resistant to colistin, which was in agreement with the DD test. None of the E. coli isolates carried plasmid-mediated colistin resistance mcr-1 to 5 genes in Multiplex PCR. Despite the important role of food-producing animals in the transfer of antibiotic resistance, mastitis-causing E. coli isolates were not the source of mcr 1 to 5 genes in this study. The present research showed a high level of phenotypic resistance to colistin, while there was no agreement with their genotypic resistance. Consumption of polymyxins in dairy calves and the probable existence of other more effective resistance genes could be the reason for this high rate of phenotypic resistance.


Main Subjects

1.    Ruegg PL. A 100-Year Review: Mastitis detection, management, and prevention. J Dairy Sci. 2017;100(12):10381-97.Doi: 10.3168/jds.2017-13023.
2.    Ruegg PL. Making antibiotic treatment decisions for clinical mastitis. Vet. Clin. N. Am. - Food Anim. Pract. 2018;34(3):413-25. Doi: 10.1016/j.cvfa.2018.06.002.
3.    Poirel L, Madec JY, Lupo A, Schink AK, Kieffer N, Nordmann P, et al. Antimicrobial resistance in Escherichia coli. Antimicrobial Resistance in Bacteria from Livestock and Companion Animals. Microbiol Spectr. 2018:289-316. Doi: 10.1128/microbiolspec.arba-0026-2017.
4.    Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev. 2017;30(2):557-96. Doi: 10.1128/cmr.00064-16.
5.    Falagas ME, Rafailidis PI, Matthaiou DK. Resistance to polymyxins: mechanisms, frequency and treatment options. Drug Resist Update. 2010;13(4-5):132-8. Doi: 10.1016/j.drup.2010.05.002.
6.    Delannoy S, Le Devendec L, Jouy E, Fach P, Drider D, Kempf I. Characterization of colistin-resistant Escherichia coli isolated from diseased pigs in France. Front Microbiol. 2017;8:2278. Doi: 10.3389%2Ffmicb.2017.02278.
7.    Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism mcr-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161-8. Doi: 10.1016/s1473-3099(15)00424-7.
8.    Brennan E, Martins M, McCusker MP, Wang J, Alves BM, Hurley D, et al. Multidrug-resistant Escherichia coli in bovine animals, Europe. Emerg Infect Dis. 2016;22(9):1650. Doi: 10.3201%2Feid2209.160140.
9.    Tada T, Nhung PH, Shimada K, Tsuchiya M, Phuong DM, Anh NQ, et al. Emergence of colistin-resistant Escherichia coli clinical isolates harboring mcr-1 in Vietnam. Int J Infect Dis. 2017;63:72-3. Doi: 10.1016/j.ijid.2017.07.003.
10.    Shen Z, Wang Y, Shen Y, Shen J, Wu C. Early emergence of mcr-1 in Escherichia coli from food-producing animals. Lancet Infect Dis. 2016;16(3):293. Doi: 10.1016/s1473-3099(16)00061-x.
11.    Haenni M, Métayer V, Gay E, Madec J-Y. Increasing trends in mcr-1 prevalence among extended-spectrum-β-lactamase-producing Escherichia coli isolates from French calves despite decreasing exposure to colistin. Antimicrob Agents Chemother. 2016;60(10):6433-4. Doi: 10.1128/aac.01147-16.
12.    Irrgang A, Roschanski N, Tenhagen B-A, Grobbel M, Skladnikiewicz-Ziemer T, Thomas K, et al. Prevalence of mcr-1 in E. coli from livestock and food in Germany, 2010–2015. PloS One. 2016;11(7):e0159863. Doi: 10.1371/journal.pone.0159863.
13.    Jeannot K, Bolard A, Plesiat P. Resistance to polymyxins in Gram-negative organisms. Int J Antimicrob Agents. 2017;49(5):526-35. Doi: 10.1016/j.ijantimicag.2016.11.029.
14.    Wang R, Liu Y, Zhang Q, Jin L, Wang Q, Zhang Y, et al. The prevalence of colistin resistance in Escherichia coli and Klebsiella pneumoniae isolated from food animals in China: coexistence of mcr-1 and blaNDM with low fitness cost. Int J Antimicrob Agents. 2018;51(5):739-44. Doi: 10.1016/j.ijantimicag.2018.01.023.
15.    Schwarz S, Johnson AP. Transferable resistance to colistin: a new but old threat. J Antimicrob Chemother. 2016;71(8):2066-70. Doi: 10.1093/jac/dkw274.
16.    Haenni M, Poirel L, Kieffer N, Châtre P, Saras E, Métayer V, et al. Co-occurrence of extended spectrum β lactamase and mcr-1 encoding genes on plasmids. Lancet Infect Dis. 2016;16(3):281-2. Doi:10.1016/s1473-3099(16)00007-4.
17.    García-Meniño I, Lumbreras P, Valledor P, Díaz-Jiménez D, Lestón L, Fernández J, et al. Comprehensive Statistical Evaluation of Etest®, UMIC®, MicroScan and Disc Diffusion versus Standard Broth Microdilution: Workflow for an Accurate Detection of Colistin-Resistant and mcr-Positive E. coli. Antibiotics. 2020;9(12):861. Doi: 10.3390%2Fantibiotics9120861.
18.    Maalej S, Meziou M, Rhimi F, Hammami A. Comparison of disc diffusion, Etest and agar dilution for susceptibility testing of colistin against Enterobacteriaceae. Lett Appl Microbiol. 2011;53(5):546-51. Doi: 10.1111/j.1472-765x.2011.03145.x.
19.    Valiakos G, Kapna I. Colistin resistant mcr genes prevalence in livestock animals (swine, bovine, poultry) from a multinational perspective. A systematic review. Vet Sci. 2021;8(11):265. Doi:10.3390/vetsci8110265.
20.    Kempf I, Jouy E, Chauvin C. Colistin use and colistin resistance in bacteria from animals. Int J Antimicrob Agents. 2016;48(6):598-606. Doi: 10.1016/j.ijantimicag.2016.09.016.
21.    Rahmatallah N, El Rhaffouli H, Laraqui A, Sekhsokh Y, Lahlou-Amine I, El Houadfi M, et al. Saudi J Pathol Microbiol. (SJPM) ISSN 2518-3362 (Print). chemotherapy.60(5):3257-8. Doi: 10.21276/sjpm.2018.3.12.10.
22.    Zhang S, Abbas M, Rehman MU, Wang M, Jia R, Chen S, et al. Updates on the global dissemination of colistin-resistant Escherichia coli: An emerging threat to public health. . Sci Total Environ. 2021;799:149280. Doi: 10.1016/j.scitotenv.2021.149280.
23.    Timmermans M, Wattiau P, Denis O, Boland C. Colistin resistance genes mcr-1 to mcr-5, including a case of triple occurrence (mcr-1,-3 and -5), in Escherichia coli isolates from faeces of healthy pigs, cattle and poultry in Belgium, 2012–2016. Int J Antimicrob Agents. 2021;57(6):106350. Doi: 10.1016/j.ijantimicag.2021.106350.
24.    Liu G, Ali T, Gao J, ur Rahman S, Yu D, Barkema HW, et al. Co-occurrence of Plasmid-Mediated Colistin Resistance (mcr-1) and Extended-Spectrum β-Lactamase Encoding Genes in Escherichia coli from Bovine Mastitic Milk in China. Microb Drug Resist. 2020;26(6):685-96. Doi: 10.1089/mdr.2019.0333.
25.    Kieffer N, Aires-de-Sousa M, Nordmann P, Poirel L. High rate of mcr-1–producing Escherichia coli and Klebsiella pneumoniae among pigs, Portugal. Emerg. Infect. Dis. 2017;23(12):2023. Doi: 10.3201%2Feid2312.170883.
26.    Yamamoto Y, Calvopina M, Izurieta R, Villacres I, Kawahara R, Sasaki M, et al. Colistin-resistant Escherichia coli with mcr genes in the livestock of rural small-scale farms in Ecuador. BMC Res. Notes. 2019;12(1):1-5. 
27.    Zhang J, Chen L, Wang J, Yassin AK, Butaye P, Kelly P, et al. Molecular detection of colistin resistance genes (mcr-1, mcr-2 and mcr-3) in nasal/oropharyngeal and anal/cloacal swabs from pigs and poultry. Sci. Rep. 2018;8(1):1-9. 
28.    Ilbeigi K, Askari Badouei M, Vaezi H, Zaheri H, Aghasharif S, Kafshdouzan K. Molecular survey of mcr1 and mcr2 plasmid mediated colistin resistance genes in Escherichia coli isolates of animal origin in Iran. BMC Res. Notes. 2021;14(1):1-5. 
29.    Alqasim A. Colistin-resistant gram-negative bacteria in Saudi Arabia: a literature review. J. King Saud Univ. Sci. 2021;33(8):101610.Doi:10.1016/j.jksus.2021.101610.
30.    Nikkhahi F, Robatjazi S, Niazadeh M, Javadi A, Shahbazi G, Aris P, et al. First detection of mobilized colistin resistance mcr-1 gene in Escherichia coli isolated from livestock and sewage in Iran. NMNI. 2021;41:100862. Doi: 10.1016/j.nmni.2021.100862.
31.    Filioussis G, Kachrimanidou M, Christodoulopoulos G, Kyritsi M, Hadjichristodoulou C, Adamopoulou M, et al. Bovine mastitis caused by a multidrug-resistant, mcr-1-positive (colistin-resistant), extended-spectrum β-lactamase–producing Escherichia coli clone on a Greek dairy farm. J Dairy Sci. 2020;103(1):852-7. Doi: 10.3168/jds.2019-17320.
32.    Khalifa HO, Ahmed AM, Oreiby AF, Eid AM, Shimamoto T, Shimamoto T. Characterisation of the plasmid-mediated colistin resistance gene mcr-1 in Escherichia coli isolated from animals in Egypt. Int J Antimicrob Agents. 2016;47(5):413-4. Doi: 10.1016/j.ijantimicag.2016.02.011.
33.    Suzuki S, Ohnishi M, Kawanishi M, Akiba M, Kuroda M. Investigation of a plasmid genome database for colistin-resistance gene mcr-1. Lancet Infect Dis. 2016;16(3):284-5. Doi: 10.1016/s1473-3099(16)00008-6.
34.    Zomorodi AR, Mohseni N, Hafiz M, Nikoueian H, Hashemitabar G, Salimizand H, et al. Investigation of mobile colistin resistance (mcr) genes among carbapenem resistance Pseudomonas aeruginosa isolates from bovine mastitis in Mashhad, Iran. Gene Rep. 2022;29:101695. Doi: 10.1016/j.genrep.2022.101695.
35.    Kieffer N, Poirel L, Nordmann P, Madec J-Y, Haenni M. Emergence of colistin resistance in Klebsiella pneumoniae from veterinary medicine. J Antimicrob Chemother. 2015;70(4):1265-7. Doi: 10.1093/jac/dku485.
36.    Organization WH. Global Antimicrobial Resistance Surveillance System (GLASS): the detection and reporting of colistin resistance. World Health Organization, 2018.
37.    Riffon R, Sayasith K, Khalil H, Dubreuil P, Drolet M, Lagacé J. Development of a rapid and sensitive test for identification of major pathogens in bovine mastitis by PCR. J Clin Microbiol. 2001;39(7):2584-9. Doi: 10.1128/jcm.39.7.2584-2589.2001.
38.    CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2020. 
39.    Rebelo AR, Bortolaia V, Kjeldgaard JS, Pedersen SK, Leekitcharoenphon P, Hansen IM, et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Euro Surveill. 2018;23(6):17-00672. Doi: 10.2807/