Interaction of central kisspeptin with melanocortin, GABAergic, corticotrophin, and NPY systems on food intake in chickens

Document Type : Research Article


1 Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.

3 Department of Clinical Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.


Kisspeptin is a key component of reproduction that can directly affect food intake in mammals. There is evidence suggesting that melanocortin, GABA, corticotrophin, and neuropeptide Y (NPY), have a mediatory role in reward; however, how these substances interact with kisspeptin-induced by food intake in birds, remains to be identified. Accordingly, in this study,   a total of 10 experiments were carried out to investigate the interplay  between kisspeptin and these systems for the control of food intake in neonatal layer-type chickens. In the first experiment, chickens were intracerebroventricular (ICV) injected with saline and Metastin (Kisspeptin, 0.25, 50, and 1 nmol). In the second experiment, saline, Metastin (1 nmol), BIBP-3226 (NPY1 receptor antagonist, 1.25 nmol), and co-injection of Metastin + BIBP-3226 were injected. Experiments 3-10 were similar to experiment 1, except that chickens received BIIE 0246 (NPY2 receptor antagonist, 1.25 nmol), CGP71683A (NPY5 receptor antagonist, 50 μg), Picrotoxin (GABAA receptor antagonist, 1.25 nmol), CGP54626 (GABAB receptor antagonist, 21 µg), astressin-B (CRF1 / CRF2 receptor antagonist, 30 µg), Astressin2-B (CRF2 receptor antagonist, 30 µg), SHU9119 (MC3 / MC4 receptor antagonist, 0.5 nmol), and MCL0020 (MC3 / MC4 receptor antagonist, 0.5 nmol) instead of BIBP-3226. Food intake was subsequently assessed until 120 min after the injection. Based on the findings, Metastin (0.25, 50, and 1 nmol) significantly increased food intake in a dose-dependent manner (p < 0.05). However, BIBP-3226 and Picrotoxin inhibited Metastin-induced hyperphagia in neonatal chickens (p < 0.05); Whereas, whereas BIIE 0246, CGP71683A, CGP54626, astressin-B, astressin2-B, SHU9119, and MCL0020 had no effect (p > 0.05). These results showed that the effect of kisspeptin on food intake might be mediated by NPY1 and GABAA receptors in layer-type chickens.


1.    Shan L, Dauvilliers Y, Siegel JM. Interactions of the histamine and hypocretin systems in CNS disorders. Nature reviews Neurology. 2015;11(7):401-13.
2.    Tachibana T, Sato M, Takahashi H, Ukena K, Tsutsui K, Furuse M. Gonadotropin-inhibiting hormone stimulates feeding behavior in chicks. Brain research. 2005;1050(1-2):94-100.
3.    Cline M, Bowden C, Calchary W, Layne J. Short‐term anorexigenic effects of central neuropeptide VF are associated with hypothalamic changes in chicks. Journal of Neuroendocrinology. 2008;20(8):971-7.
4.    Takayasu S, Sakurai T, Iwasaki S, Teranishi H, Yamanaka A, Williams SC, et al. A neuropeptide ligand of the G protein-coupled receptor GPR103 regulates feeding, behavioral arousal, and blood pressure in mice. Proceedings of the National Academy of Sciences. 2006;103(19):7438-43.
5.    Bruzzone F, Lectez B, Tollemer H, Leprince J, Dujardin C, Rachidi W, et al. Anatomical distribution and biochemical characterization of the novel RFamide peptide 26RFa in the human hypothalamus and spinal cord. Journal of neurochemistry. 2006;99(2):616-27.
6.    Khan MSI, Ohkubo T, Masuda N, Tachibana T, Ueda H. Central administration of metastin increases food intake through opioid neurons in chicks. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2009;153(2):209-12.
7.    Stengel A, Wang L, Goebel-Stengel M, Taché Y. Centrally injected kisspeptin reduces food intake by increasing meal intervals in mice. Neuroreport. 2011;22(5):253.
8.    Cavalcante TCF, de Farias Campina RC, de Souza JA, da Silva AAM, de Souza SL. Hypothalamic peptide and nutrient sensors gene expression in the hypothalamus of neonatal rat. Brain Research Bulletin. 2020;164:214-20.
9.    Yousefvand S, Hamidi F, Zendehdel M, Parham A. Interaction of neuropeptide Y receptors (NPY1, NPY2 and NPY5) with somatostatin on somatostatin-induced feeding behaviour in neonatal chicken. British Poultry Science. 2019;60(1):71-8.
10.    Yousefvand S, Hamidi F, Zendehdel M, Parham A. Survey the effect of insulin on modulating feed intake via NPY receptors in 5-day-old chickens. International Journal of Peptide Research and Therapeutics. 2020;26(1):467-76.
11.    Singhal S, Hill JW. Obesity and Stress: The Melanocortin Connection. Textbook of Energy Balance, Neuropeptide Hormones, and Neuroendocrine Function: Springer; 2018. p. 271-319.
12.    Micioni Di Bonaventura E, Botticelli L, Tomassoni D, Tayebati SK, Micioni Di Bonaventura MV, Cifani C. The melanocortin system behind the dysfunctional eating behaviors. Nutrients. 2020;12(11):3502.
13.    Yousefvand S, Hamidi F. Role of paraventricular nucleus in regulation of feeding behaviour and the design of intranuclear neuronal pathway communications. International Journal of Peptide Research and Therapeutics. 2020; 26(3):1231-42.
14. Richard D, Lin Q, Timofeeva E. The corticotropin-releasing factor family of peptides and CRF receptors: their roles in the regulation of energy balance. European journal ofpharmacology.  440(2-3): 189-197. 
15. Stengel A, Goebel M, Wang L, Rivier J, Kobelt P, Mönnikes H, Tache Y. Central nesfatin-1 reduces dark-phase food intake and gastric emptying in rats: differential role of corticotropin-releasing factor 2 receptor. Endocrinology. 2009;150(11): 4911-4919. 
16.    Doyon C, Moraru A, Richard D. The corticotropin-releasing factor system as a potential target for antiobesity drugs. Drug News Perspect. 2004;17:505–517. 
17.    Fu L-Y, van den Pol AN. Kisspeptin directly excites anorexigenic proopiomelanocortin neurons but inhibits orexigenic neuropeptide Y cells by an indirect synaptic mechanism. Journal of Neuroscience. 2010;30(30):10205-19.
18.    Wu M, Dumalska I, Morozova E, van den Pol A, Alreja M. Melanin-concentrating hormone directly inhibits GnRH neurons and blocks kisspeptin activation, linking energy balance to reproduction. Proceedings of the National Academy of Sciences. 2009;106(40):17217-22.
19.    McConn BR, Koskinen A, Denbow DM, Gilbert ER, Siegel PB, Cline MA. Central injection of oxytocin reduces food intake and affects hypothalamic and adipose tissue gene expression in chickens. Domestic animal endocrinology. 2019;67:11-20.
20.    Rajaei S, Zendehdel M, Rahnema M, Hassanpour S, Asle-Rousta M. Mediatory role of the central NPY, melanocortine and corticotrophin systems on phoenixin-14 induced hyperphagia in neonatal chicken. General and comparative endocrinology. 2022;315:113930.
21.    Olanrewaju H, Purswell J, Collier S, Branton S. Effects of light ingress through ventilation fan apertures on selected blood variables of male broilers. Int J Poult Sci. 2017;16(8):288-95.
22.    Qi W, Ding D, Salvi RJ. Cytotoxic effects of dimethyl sulphoxide (DMSO) on cochlear organotypic cultures. Hearing research. 2008;236(1-2):52-60.
23.    Saito E-S, Kaiya H, Tachibana T, Tomonaga S, Denbow DM, Kangawa K, et al. Inhibitory effect of ghrelin on food intake is mediated by the corticotropin-releasing factor system in neonatal chicks. Regulatory peptides. 2005;125(1-3):201-8.
24.    Zendehdel M, Hassanpour S, Movahedi N. Central and peripheral methylamine-induced hypophagia is mediated via nitric oxide and TAAR1 in neonatal layer-type chicken. Neuroscience Letters. 2020;739:135408.
25.    Heidarzadeh H, Zendehdel M, Babapour V, Gilanpour H. The effect of Nesfatin-1 on food intake in neonatal chicks: role of CRF1/CRF2 and H1/H3 receptors. Veterinary research communications. 2018;42(1):39-47.
26.    Ahmadi F, Zendehdel M, Babapour V, Panahi N. CRF 1/CRF 2 and MC 3/MC 4 Receptors Affect Glutamate-Induced Food Intake in Neonatal Meat-Type Chicken. Brazilian Journal of Poultry Science. 2019;21.
27.    Skowron K, Jasiński K, Kurnik‐Łucka M, Stach P, Kalita K, Węglarz WP, et al. Hypothalamic and brain stem neurochemical profile in anorectic rats after peripheral administration of kisspeptin‐10 using 1H‐NMR spectroscopy in vivo. NMR in Biomedicine. 2020;33(7):e4306.
28.    Castellano J, Navarro V, Fernandez-Fernandez R, Nogueiras R, Tovar S, Roa J, et al. Changes in hypothalamic KiSS-1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition. Endocrinology. 2005;146(9):3917-25.
29.    Orlando G, Leone S, Ferrante C, Chiavaroli A, Mollica A, Stefanucci A, et al. Effects of kisspeptin-10 on hypothalamic neuropeptides and neurotransmitters involved in appetite control. Molecules. 2018;23(12):3071.
30.    Kim GL, Dhillon SS, Belsham DD. Kisspeptin directly regulates neuropeptide Y synthesis and secretion via the ERK1/2 and p38 mitogen-activated protein kinase signaling pathways in NPY-secreting hypothalamic neurons. Endocrinology. 2010;151(10):5038-47.
31.    Luque RM, Kineman RD, Tena-Sempere M. Regulation of hypothalamic expression of KiSS-1 and GPR54 genes by metabolic factors: analyses using mouse models and a cell line. Endocrinology. 2007;148(10):4601-11.
32- Stengel A, Wang L, Goebel-Stengel M,Taché Y. Centrally injected kisspeptin reduces food intake by increasing meal intervals in mice. Neuroreport. 2011; 22: 253–257.
33- Castellano JM, Navarro VM, Fernández-Fernández R, Nogueiras R, Tovar S, Roa J, Vazquez MJ, Vigo E, Casanueva FF, Aguilar E et al. Changes in hypothalamic KiSS-1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition. Endocrinology. 2005; 146: 3917–3925. 
34- Clarke IJ, Henry BA. Leptin and reproduction. Rev Reprod. 1999; 4: 48–55. 
35- Harvey J, Ashford ML Leptin in the CNS: Much more than a satiety signal. Neuropharmacology. 2003; 44: 845–854. 
36- Thompson EL, Patterson M, Murphy KG, Smith KL, Dhillo WS, Todd JF, Ghatei MA, Bloom SR. Central and peripheral administration of kisspeptin-10 stimulates the hypothalamic-pituitary-gonadal axis. J Neuroendocrinol. 2004; 16: 850–858.
37- Lazzarino GP, Andreoli MF, Rossetti MF, Stoker C, Tschopp MV, Luque EH, Ramos JG. Cafeteria diet differentially alters the expression of feeding-related genes through DNA methylation mechanisms in individual hypothalamic nuclei. Mol Cell Endocrinol. 2017; 450: 113–125.
38- Roa J, Garcia-Galiano D, Varela L, Sánchez-Garrido MA, Pineda R, Castellano JM, Ruiz-Pino F, Romero M, Aguilar E, López M et al. The mammalian target of rapamycin as novel central regulator of puberty onset via modulation of hypothalamic Kiss1 system. Endocrinology. 2009; 150: 5016–5026.
39.    Novoseletsky N, Nussinovitch A, Friedman-Einat M. Attenuation of food intake in chicks by an inverse agonist of cannabinoid receptor 1 administered by either injection or ingestion in hydrocolloid carriers. General and Comparative Endocrinology. 2011;170(3):522-7.
40.    Kurian JR, Keen KL, Guerriero KA, Terasawa E. Tonic control of kisspeptin release in prepubertal monkeys: implications to the mechanism of puberty onset. Endocrinology. 2012;153(7):3331-6.
41.    Ibos KE, Bodnár É, Bagosi Z, Bozsó Z, Tóth G, Szabó G, et al. Kisspeptin-8 induces anxiety-like behavior and hypolocomotion by activating the HPA axis and increasing GABA release in the nucleus accumbens in rats. Biomedicines. 2021;9(2):112.
42.    García-Galiano D, Pineda R, Roa J, Ruiz-Pino F, Sánchez-Garrido MA, Castellano JM, et al. Differential modulation of gonadotropin responses to kisspeptin by aminoacidergic, peptidergic, and nitric oxide neurotransmission. American Journal of Physiology-Endocrinology and Metabolism. 2012;303(10):E1252-E63.
43.    Navarro M, Olney JJ, Burnham NW, Mazzone CM, Lowery-Gionta EG, Pleil KE, et al. Lateral hypothalamus GABAergic neurons modulate consummatory behaviors regardless of the caloric content or biological relevance of the consumed stimuli. Neuropsychopharmacology. 2016;41(6):1505-12.
44.    Zendehdel M, Ebrahimi-Yeganeh A, Hassanpour S, Koohi M. Interaction of the dopaminergic and Nociceptin/Orphanin FQ on central feed intake regulation in chicken. British poultry science. 2019;60(3):317-22.
45.    Hassanpour S, Zendehdel M, Babapour V, Charkhkar S. Endocannabinoid and nitric oxide interaction mediates food intake in neonatal chicken. British Poultry Science. 2015;56(4):443-51.
Volume 14, Issue 2 - Serial Number 27
This issue XML file is being prepared.
June 2022
Pages 19-28
  • Receive Date: 14 January 2022
  • Revise Date: 08 April 2022
  • Accept Date: 20 April 2022
  • First Publish Date: 30 April 2022