Evaluation of resistance to fluoroquinolones and determination of mutations in gyrA and parC genes in Escherichia coli isolated from raw milk of dairy cows with coliform mastitis in Khorasan Razavi province, Iran

Document Type : Research Article


1 Graduated from Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

2 Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

3 Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

4 Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran


The present study was performed to assess the resistance profile to fluoroquinolone and to determine mutations in gyrA and parC genes of Escherichia coli in bovine coliform mastitis. Fluoroquinolones (norfloxacin (NOR), ciprofloxacin (CIP), enrofloxacin (NFX), levofloxacin (LEV), and ofloxacin (OFL) were tested against E. coli isolates, isolated from bovine mastitis (100 milk samples) by disk diffusion method. To determine the extent of gyrA and parC mutations associated with fluoroquinolone resistance in E. coli, two isolates with the highest resistance to each fluoroquinolone were submitted for the amplification and sequencing of the quinolone resistance-determining regions (QRDRs) of gyrA and parC genes. The disk diffusion method indicated that E. coli isolates had the highest intermediate resistance to OFL (16.7%), followed by NFX and NOR (15%), while they had low resistance to CIP and LEV (3.33%). A few silent mutations in gyrA (in codons 91, 100, 111, 131, 132) and in parC (in codons 91, 157, 159) were detected in QRDRs, and mutations in nucleotides 65, 80, and 83 in gyrA, and 195, 209, 212 in parC were detected in the other isolate. These results showed an intermediate rate of resistance to fluoroquinolones in E. coli isolates from raw milk of cows with coliform mastitis


1.    Janzen J. Economic losses resulting from mastitis. A review. J Dairy Sci. 1970 Oct;53(9):1151-60.
2.    Jingar SC, Mahendra S, Roy AK. Economic losses due to clinical mastitis in cross-bred cows. Dairy Vet Sci J. 2017;3(2):555606. 
3.    Hogan J, Smith KL. Coliform mastitis. Vet Res. 2003;34(5):507-19.
4.    Cullor, JS and Smith, WL. Endotoxin and disease in food animals. Compend. Contin. Educ. Vet. 1996;18(1): 31-38.
5.    Bradely AJ, Leach KA, Breen JE, Green LE, Green MJ. Survey of the incidence and etiology of mastitis in dairy farms in England and Wales. Vet Rec. 2007;160:253-258. 
6.    Wenz JR, Barrington GM, Garry FB, Dinsmore RP, Callan RJ. Use of systemic disease signs to assess disease severity in dairy cows with acute coliform mastitis. J Am Vet Med Assoc. 2001 Feb;218(4):567-72.
7.    Burvenich C, Van Merris V, Mehrzad J, Diez-Fraile A, Duchaeau L. Severity of  E. coli mastitis is mainly determined by cow factors. Vet Res. 2003 Sep-Oct;34:521-564. 
8.    Suojala L, Kaartinen L, Pyörälä S. Treatment for bovine Escherichia coli mastitis – an evidence based approach. J Vet Pharmacol Ther. 2013 Dec;36(6):521-31.
9.    Sharfaraj Nawaz M, Bodla R, Kant R, Pratab Singh S, Bhutani R, Kapoor G. Fluoroquinolone as antimicrobial agent: A Review. Int J Pharm Sci Res. 2017;2(3):57-63.
10.    Suh B, Lorber B. Quinolones. Med Clin North Am. 1995 Jul;79(4):869-894.
11.    Hooper, DC. Mechanisms of action of antimicrobials: focus on fluoroquinolones. Clin. Infect. Dis. 2001;32(1): 9-15.
12.    Higgins, PG; Fluit, AC and Schmitz, FJ. Fluoroquinolones: structure and target sites. Curr. Drug. Targets. 2003;4(2): 181-190.
13.    Hooper, DC. Mechanisms of quinolone resistance. In: Hooper DC, Rubinstein E (Eds.), Quinolone antimicrobial agents. (3rd Edn.), Washington, D.C, USA: American Society of Microbiology Press. 2003;PP:41-67.
14.    Hopkins KL, Davies RH, Threlfall EJ. Mechanisms of quinolone resistance in Escherichia coli and Salmonella: recent developments. Int J Antimicrobial Agents. 2005;25:358–373.
15.    Saranya K, Pavulraj S, Kalaiselvi L, Amsaveni S, Ramesh S. Antibacterial susceptibility profiles of coliforms isolated from bovine subclinical and clinical mastitis against fluoroquinolones.Tamilandu Journal. Vet Anim Sci. 2013 Oct;9 (4):279-284.
16.    Srinivasan, V; Gillespie, BE; Lewis, MJ; Nguyen, LT; Headrick, SI; Schukken, YH and Oliver, SP. Phenotypic and genotypic antimicrobial resistance patterns of Escherichia coli isolated from dairy cows with mastitis. Vet. Microbiol. 2007;124(3-4): 319-328.
17.    Alekish M, Al-Qudah K, Al-Saleh A. Prevalence of antimicrobial resistance among bacterial pathogens isolated from bovine mastitis in northern Jordan. Rev Vet Med. 2013 June;164:319-26.
18.    Chandrasekaran D, Venkatesan P, Tirumurugaan K, Nambi A, Thirunavukkarasu P, Kumanan K, et al.  Pattern of antibiotic resistant mastitis in dairy cows, Vet World. 2014 June;7(6):389-394.
19.    Balakrishnan S, Antony PX, Mukhopadhyay HK, Pillai RM, Thanislass J, Padmanaban V, et al. Genetic characterization of fluoroquinolone-resistant Escherichia coli associated with bovine mastitis in India. Vet World. 2016 Jul;9(7):705-709.
20.    Su Y, Yu C-Y, Tsai Y, Wang S-H, Lee C, Chu C. Fluoroquinolone-resistant and extended-spectrum β-lactamase-producing Escherichia coli from the milk of cows with clinical mastitis in Southern Taiwan. J Microbiol Immunol Infect. 2016 Dec;49(6):892-901. 
21.    Metzger SA, Hogan JS. Short communication: Antimicrobial susceptibility and frequency of resistance genes in Escherichia coli isolated from bovine mastitis. J Dairy Sci. 2013 May;96:3044–3049.
22.    Malinowski E, Lassa H, Smulski S, Kłossowska A, Kaczmarowski M. Antimicrobial susceptibility of bacteria isolated from cows with mastitis in 2006-2007. Bulletin of the Veterinary Institute in Pulawy. 2008 Nov;52(565):72.
23.    Tanzin T, Nazir KHMNH, Zahan MN, Md. Parvej S, Zesmin K, Rahman MT. Antibiotic resistance profile of bacteria isolated from raw milk samples of cattle and buffaloes. J Adv Vet Anim Res. 2016; 3 (1).  
24.    Persson Y, Nyman AK, Grönlund-Andersson U. Etiology and antimicrobial susceptibility of udder pathogens from cases of subclinical mastitis in dairy cows in Sweden. Acta Vet Scand. 2011;53(1):36.
25.    Persson Y, Katholm J, Landin H, Mörk Mj. Efficacy of enrofloxacin for the treatment of acute clinical mastitis caused by Escherichia coli in dairy cows. Vet Rec. 2015;176(26):673-673.
26.    Armanullah, MD; Anjay, Dr; Kumar, P; Kumari, S; Kaushik, P; Archana and Arya, S. Prevalence of Multi-Drug Resistant (MDR) Escherichia coli in bovine clinical samples. Int. J. Curr. Microbiol. App. Sci. 2018; 7: 1476-1485.
27.    Firouzi R, Rajaian H, Tabaee I, Saeedzadeh A. In vitro antibacterial effects of marbofloxacin on microorganisms causing mastitis in cows. J Vet Res. 2010;65(1).
28.    Heisig, P. Genetic evidence for a role of parC mutations in development of high-level fluoroquinolone resistance in Escherichia coli. Antimicrob. Agents Chemother. 1996;40(4):879-85.
29.    Chen JY, Siu LK, Chen YH, Lu PL, Ho M, Perg CF. Molecular epidemiology and mutations at gyrA and parC genes of ciprofloxacin-resistant Escherichia coli isolates from Taiwan medical center. Microb Drug Resist. 2001;7, 47-53.
30.    Ruiz J, Gomez J, Navia MM, Ribera A, Sierra JM, Marco F. High prevalence of nalidixic acid resistant, ciprofloxacin susceptible phenotype among clinical isolates of Escherichia coli and other Enterobacteriaceae. Diagn Microbiol and infect Dis. 2002;42, 257-61.
31.    Ogbolu DO, Daini O, Ogunledun A, Alli AT, Olusoga-Ogbolu F, Webber M. Effects of gyrA and parC mutations in quinolones resistant clinical gram negative bacteria from Nigeria. Afr J Biomed Res. 2012;15(2):97-104.
32.    Sáenz Y, Zarazaga M, Briñas L, Ruiz-Larrea F, Torres C. Mutations in gyrA and parC genes in nalidixic acid-resistant Escherichia coli strains from food products, humans and animals. J Antimicrob Chemother. 2003;51(4):1001-5.
33.    Yadegari H, Biswas A, Akhter MS, Driesen J, Ivaskevicius V, Marquardt N, Oldenburg J. Intron retention resulting from a silent mutation in the VWF gene that structurally influences the 5' splice site. Blood. 2016 Oct 27;128(17):2144-2152. 
34.    Agashe D, Sane M, Phalnikar K, Diwan GD, Habibullah A, Martinez-Gomez NC, et al. Large-effect beneficial synonymous mutations mediate rapid and parallel adaptation in a bacterium. Mol Biol Evol. 2016 Jun;33(6):1542-53.
35.    Hauber DJ, Grogan DW, DeBry RW. Mutations to less-preferred synonymous codons in a highly expressed gene of Escherichia coli: fitness and epistatic interactions. PLoS One 2016;11(1):e0146375.
36.    CLSI. Performance standards for antimicrobial susceptibility testing. 27th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2017.
37.    Reischl U, Youssef MT, Kilwinski J, Lehn N, Zhang WL, Karch H, et al. Real-time fluorescence PCR assay for detection and characterization of shiga toxin, intimin, and enterohemolysin genes from shiga toxin-producing Escherichia coli. J Clin Microbiol. 2007;40(7):2555-2565.
Volume 14, Issue 1 - Serial Number 26
This issue XML file is being prepared.
April 2022
Pages 20-28
  • Receive Date: 12 July 2021
  • Revise Date: 11 January 2022
  • Accept Date: 12 February 2022
  • First Publish Date: 01 April 2022