Antibiotic resistance patterns of bacteria isolated from Clarias gariepinus farms in Kaduna state, Nigeria

Document Type : Research Article

Authors

1 Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria.

2 Veterinary Teaching Hospital, Ahmadu Bello University Zaria, Nigeria.

3 Department of Zoology, Ahmadu Bello University Zaria, Nigeria.

4 Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine University of Ilorin, Ilorin, Nigeria.

5 Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Science, University of Ilorin, Ilorin, Nigeria.

6 Department of Animal Health Technology, Oyo State College of Agriculture and Technology Igboora, Oyo State, Nigeria.

Abstract

Fish farming is increasing globally, with an increase in bacterial infections known to cause morbidity and varying mortality, affecting the productivity and profitability of aquaculture. The objective of this study was to determine the antibiotics susceptibility and multiple antibiotic resistance index of bacteria isolated from fish in some selected fish farms in Kaduna State to ten commonly used antibiotics using the Kirby-Bauer disc diffusion method. In total, 84 bacteria were isolated from 75 Clarias gariepinus in this study, belonging to 12 genera. The antibiotic profile of the bacteria isolated displayed different sensitivity and resistance to the antibiotics used. The highest numbers of the Gram-positive (59.5%) and Gram-negative (69%) bacteria, respectively, were sensitive to ciprofloxacin compared to the other antibiotics. All the bacterial isolates displayed varying diversity of multidrug-resistant patterns. A total of 38 and 41 different resistance patterns for Gram-positive and Gram-negative respectively were observed. The multiple antibiotic resistance (MAR) index analysis reveals that 97.3% of the bacteria had a high MAR index value (> 0.2). In conclusion, there is a diversity of bacteria organisms within the fish farms that are pathogenic to both fish and humans. Therefore, there is a need to implement optimal preventive management measures and control the use of antibiotics. 

Keywords

Main Subjects


1. FAO. Regional review on status and trends in aquaculture development in Sub-Saharan Africa -2015. FAO Fisheries and Aquaculture circular, Rome, Italy. 2017; 1135/4
2. Assefa A, Abunna F.  Maintenance of fish health in aquaculture: Review of epidemiological approaches for prevention and control of infectious disease of fish.  Vet. Med. Int. 2018; 10 pages. Article ID 5432497. 
3. Ugwem UG, Akinrotimi OA, Eseimokumo F. Haematological Responses of Wild Nile Tilapia Oreochromis niloticus after Acclimation to Captivity. Jordan J. Biol. Sci. 2011; 4(4): 225 – 230.
4. Ozigbo E, Anyadike C, Adegbite O, Kolawole P. Review of Aquaculture Production and Management in Nigeria. Am. J. Exp. Agric. 2014; 4(10):1137-1151.
5. Abanikannda OTF, Jimoh AA, Abagun AA, Badmus LA. Comparative study of growth parameters of African Catfishes as panacea for food security. Nigerian J. Anim. Sci. 2019; 21 (3): 179-192.
6. Miranda CD, Godoy FA, Lee MR.  Current Status of the Use of Antibiotics and the Antimicrobial Resistance in the Chilean Salmon Farms. Front. Microbiol. 2018; 9:1284. 
7. Wanja DW, Mbuthia PG, Waruiru RM, Bebora LC, Ngowi HA, Nyaga PN. Antibiotic and disinfectant susceptibility patterns of bacteria isolated from farmed fish in Kirinyaga County, Kenya, Int. J. Microbiol. 2020; 1–8. 
8. Sarker J, Faruk MAR.  Experimental infection of Aeromonas hydrophila in pangasius Progress. agric. 2016; 27(3):392-399.
9. Opiyo MA, Marijani E, Muendo P, Odede R, Leschen W, Charo-Karisa H. A review of aquaculture production and health management practices of farmed fish in Kenya. Int. J. Vet. Sci. Med. 2018; 6:141-148.
10. Chen Y, Zhu X, Yang Y, Han D, Jin J, Xie S. Effect of dietary chitosan on growth performance, hematology, immune response, intestine morphology, intestine microbiota and disease resistance in Gibel carp (Carassius auratus gibelio). Aquac. Nutr. 2014; 20: 532–546. 
11. Okocha RC, Olatoye IO, Adedeji OB. Food safety impacts of antimicrobial use and their residues in aquaculture. Public Health Rev. 2018; 39:21 
12. Santos L, Ramos F. Analytical strategies for the detection and quantification of antibiotic residues in aquaculture fishes: A review. Trends Food Sci. Technol. 2016; 52:16–30.   
13. Ayukekbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob Resist Infect Control. 2017; 6:47. 
14. Monteiro SH, Graziela CR, Moura A, Garcia F, Pilarski F. Antibiotic Residues and Resistant Bacteria in Aquaculture. Pharm. Chem. J. 2018; 5(4):127-147.
15. Smith P, Alday-Sanz V, Matysczak J, Moulin G, Lavilla-Pitogo CR, Prater D. Monitoring and surveillance of antimicrobial resistance in microorganisms associated with aquatic animals. Rev. Sci. Tech. Off. Int. Epiz. 2013; 32 (2): 583-593. 
16 FAO.  Monitoring and surveillance of antimicrobial resistance in bacteria from healthy food animals intended for consumption. Regional Antimicrobial Resistance Monitoring and Surveillance Guidelines – Volume 1. Bangkok. 2019.
17. Kousar R, Shafi N, Andleeb S, Ali N, Mazhar AT, Khalid S. Assessment and incidence of fish associated bacterial pathogens at hatcheries of Azad Kashmir, Pakistan. Braz. J. Biol. 2020; 80(3): 607-614. 
18. Afolabi OJ, Oladele OO, Olususi FC. Assessment of bacterial loads of Clarias gariepinus (Burchell, 1822) obtained from cultured and natural habitats. JoBAZ. 2020; 81:32.
19 Uddim MN, Al-Harbi AH. Bacterial flora of polycultured common carp (Cyprinus carpio) and African catfish (Clarias gariepinus). Int. Aquat. Res. 2012; 4:10. 
20 Danba  EP, Bichi  AH,  Ishaku S, Ahmed MK, Buba U, Bingari MS. Occurrence of pathogenic bacteria associated with Clarias gariepinus in selected fish farms of Kumbotso Local Government Area of Kano State Nigeria. Pure and Applied Science. 2014; 7(2): 145-149.
21. Wamala SP, Mugimba KK, Mutoloki SØ, Evensen RM, Byarugaba DK, Sørum H. Occurrence and antibiotic susceptibility of fish bacteria isolated from Oreochromis niloticus (Nile tilapia) and Clarias gariepinus (African catfish) in Uganda. Fish Aquatic Sci. 2018; 21(6):2-10. 
22. Tsfaye S, Kasye M, Chane M, Bogale B, Abebeagre Z.  Preliminary Survey of Gram-negative bacterial pathogens from commonly caught fish species (Oreochromis niloticus, Cyprinus carpio and Clarias gariepinus) in Lake Hayiq, Ethiopia. Fish Aqua J. 2018; 9: 238.
23. Kousar R, Shafi N, Andleeb S, Ali N, Mazhar AT, Khalid S. Assessment and incidence of fish associated bacterial pathogens at hatcheries of Azad Kashmir, Pakistan. Braz. J. Biol. 2020; 80(3): 607-614. 
24. Cabral JPS. Water microbiology, bacterial pathogens and water. Int J Env Res Pub He. 2010; 7: 3657-3703.
25. Green HC, Dick LK, Gilpin B, Samadpour M, Field KG. Genetic markers for rapid PCR-based identification of gull, Canada goose, duck and chicken feacal contamination in water. Appl. Environ. Microbiol. 2012;78 (2):503-510. 
26. Mauffret A, Caprais M, Gourmelon M. Relevance of bacteroidales and F-specific RNA bacteriophages for efficient fecal contamination tracking at the level of a catchment in France. Appl. Environ. Microbiol. 2012;78 (15): 5143-5152. 
27. Wanja DW, Mbuthia PG, Waruiru RM, Mwadime JM, Bebora LC, Nyaga PN and Ngowi HA. Bacterial pathogens isolated from farmed fish and source pond water in Kirinyaga County, Kenya .  Int. J. Fish. Aquat. Stud. 2019; 7(2): 295-301.
28. Nahar S, Rahman MM, Ahmed GU, Faruk MR.  Isolation, identification, and characterization of Aeromonas hydrophila from juvenile farmed Pangasius (Pangasianodon hypophthalmus). Int. J. Fish. Aquat. Stud. 2016; 4(4):52-60.
29. Gufe C, Hodobo TC, Mbonjani B, Majonga O, Marumure J, Musari S.  Antimicrobial profiling of bacteria isolated from fish sold at informal market in Mufakose, Zimbabwe Int. J. Food Microbiol.  2019; 1-7. 
30. Shahriar A, Akter T, Kobra AT, Emran TB, Mallick J,Dutta M. Isolation of pathogenic and non-pathogenic microbial stains from different types of sea fish samples and their quality assessment with antibiogram properties.  Journal of Advances in Microbiology. 2019; 19(1): 1-10.  
31. Adinortey CA, Amewowor DHA, Otwe EP, Galyuon IKA, Asante DKA. Antibiotic susceptibility profile and occurrence of Escherichia coli isolated from clinical and environmental samples in Cape Coast, Ghana. Res. J. Microbiol. 2017; 12(3):170–176. 
32. Watts JEM, Schreier HJ, Lanska L, Hale MS. The rising tide of antimicrobial resistance in aquaculture: sources, sinks and solutions. Mar. Drugs. 2017; 15(6):158.  
33. Ayandiran TA, Dahunsi SO. Microbial evaluation and occurrence of antidrug multi resistant organisms among indigenous Clarias spp in River Oluwa, Nigeria. J. King Saud Univ. Sci. 2017; 29(1): 96-105. 
34. Osundiya O, Oladele R, Oduyebo O. Multiple antibiotic resistance (MAR) indices of Pseudomonas and Klebsiella species isolates in Lagos University Teaching Hospital,” African J. Clin. Exp. Microbiol. 2013; 14(3): 164-168.  
35. Kathleen MM, Samuel L, Reagan FC, Kasing EL, Lesley AM, Toh SC. Antibiotic Resistance of Diverse Bacteria from Aquaculture in Borneo Int. J. Microbiol. Article ID 2164761, 9 pages http://dx.doi.org/10.1155/2016/2164761
36. Gazal LE, Brito, KCT, Kobayashi RK, Takayama N, Cavalli, LS, Otutumi  et al. Antimicrobials and resistant bacteria in global fish farming and the possible risk for public health. Arquivos do Instituto Biológico, 87, e0362019. Epub  2020; 19. 
37. KSGC .2015. Kaduna State Geographical Center, www.kadunastate.gov.ng, retrieved 25-06 2019
38. Holt GJ, Krieg NR, Sneath PHA, Stanley JT, Williams ST. Bergey’s manual of determinative bacteriology. 9th ed; Baltimore md; Williams and wikins. Pub.co, Marrylan. 1994; 786.
39. Markey B, Leonard F, Archambault M, Cullinane A,  Maguire  D. Clinical Veterinary Microbiology, Oxford University Press, New York, NY, USA, 2nd edition 2013.
40.ABIS(AdvancedBacteriologicalIdentificationSoftware),2018(http://www.tgw1916.net/bacteria_logare_desktop.html). Accessed 12, March 2020.
41. CLSI, Performance Standards for Antimicrobial Susceptibility Testing. In: Information Supplement M100-S17. Clinical Laboratory and Standards Institute, Wayne, PA, USA. 2015; 76–79.
42. 42. Bauer AW, Kirby WM, Sheriss JC, Turc M. Antibiotic susceptibility testing by standardized single method. Am. J. Clin. Pathol. 1996; 45:493-496.
43. Oteo J, Lazaro E, de Abajo FJ, Baquero F, Campos J. Antimicrobial-resistant invasive Escherichia coli, Spain. Emerg. Infect. Dis. 2005; 11(4):546-553.
Volume 14, Issue 1 - Serial Number 26
This issue XML file is being prepared.
April 2022
Pages 29-38
  • Receive Date: 15 September 2021
  • Revise Date: 03 March 2022
  • Accept Date: 25 March 2022
  • First Publish Date: 01 April 2022