Recovery effects of pomegranate seed powder on the testes following cadmium poisoning in Japanese quail (Coturnix japonica); a stereological and lipid peroxidation study

Document Type : Short communication

Authors

1 Department of Basic Sciences, Faculty of Veterinary Medicine, University of Shahrekord, Shahrekord, Iran

2 Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Shahrekord, Shahrekord, Iran

3 DVM Student, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.

Abstract

    This study aimed to investigate the effects of pomegranate seed powder on cadmium-poisoned testicular tissue in Japanese quail. A total of 270 day-old Japanese quail chicks were assigned to six treatment groups, control group, cadmium 50 ppm (group II), pomegranate seed powder (1 and 0.5 %; groups III and IV, respectively), pomegranate seed powder 1% + Cd 50 ppm (group V), pomegranate seed powder 0.5% + Cd 50 ppm (group VI). Stereological parameters in testes and TBARS, cholesterol, and triglyceride levels were determined. Testicular components showed a significant reduction in area surface and volume density in the cadmium-exposed groups compared with controls (p < 0.05). It was found that in the cadmium induction group, TBARS, cholesterol, and triglyceride levels were significantly higher compared to the normal level (p < 0.05). The results showed that pomegranate seed powder could increase the area surface and volume density of testicular germinal ingredients and decrease the content of TBARS, cholesterol, and triglyceride (p > 0.05) in cadmium poisoning testis. These results show that cadmium has destructive effects and pomegranate seed powder has prevented the development of these effects on stereological and lipid parameters.

Keywords

Main Subjects


1.    Järup L, Akesson A. Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol. 2009;238(3):201-8.
2.    Toman R, Massanyi P, Lukáč N, Ducsay L, Golian J. Fertility and content of cadmium in pheasant (Phasianus colchicus) following cadmium intake in drinking water. Ecotoxicol Environ Saf. 2005;62(1):112-7.
3.    Dauwe T, Janssens E, Kempenaers B, Eens M. The effect of heavy metal exposure on egg size, eggshell thickness and the number of spermatozoa in blue tit Parus caeruleus eggs. Environ Pollut. 2004;129(1):125-9.
4.    Sarkar A, Ravindran G, Krishnamurthy V. A brief review on the effect of cadmium toxicity: from cellular to organ level. Int J Adv Biotechnol Res. 2013;3(1):17-36.
5.    Marettová E, Maretta M, Legáth J. Toxic effects of cadmium on testis of birds and mammals: a review. Anim Reprod Sci. 2015;155:1-10.
6.    Ogawa Y, Itoh M, Hirai S, Suna S, Naito M, Qu N, et al. Cadmium exposure increases susceptibility to testicular autoimmunity in mice. J Appl Toxicol. 2013;33(7):652-60.
7.    Tremellen K. Oxidative stress and male infertility—a clinical perspective. Hum Reprod Update. 2008;14(3):243-58.
8.    Turner TT, Lysiak JJ. Oxidative stress: a common factor in testicular dysfunction. J Androl. 2008;29(5):488-98.
9.    Chen YW, Yang CY, Huang CF, Hung DZ, Leung YM, Liu SH. Heavy metals, islet function and diabetes development. Islets. 2009;1(3):169-76.
10.    Seeram NP, Adams LS, Henning SM, Niu Y, Zhang Y, Nair MG, et al. In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J Nutr Biochem. 2005;16(6):360-7.
11.    Türk G, Sönmez M, Aydin M, Yüce A, Gür S, Yüksel M, et al. Effects of pomegranate juice consumption on sperm quality, spermatogenic cell density, antioxidant activity and testosterone level in male rats. Clin Nutr. 2008;27(2):289-96.
12.    Gali-Muhtasib HU, Younes IH, Karchesy JJ, el-Sabban ME. Plant tannins inhibit the induction of aberrant crypt foci and colonic tumors by 1,2-dimethylhydrazine in mice. Nutr Cancer. 2001;39(1):108-16.
13.    Castonguay A, Gali H, Perchellet E, Gao X, Boukharta M, Jalbert G, et al. Antitumorigenic and antipromoting activities of ellagic acid, ellagitannins and oligomeric anthocyanin and procyanidin. Int J Oncol. 1997;10(2):367-73.
14.    Noorafshan A. Stereology as a valuable tool in the toolbox of testicular research. Ann Anat. 2014;196(1):57-66.
15.    Elgindy AAE, Elsarha ES. Biochemical and technological studies on the effect of pomegranate peel in addition to pan bread and its effect on the pollution of cadmium chloride in mice. Adv Environ Biol. 2015;9(27):33-43.
16.    Noorafshan A. Stereology as a valuable tool in the toolbox of testicular research. Ann Anat. 2014;196(1):57-66.
17.    Buege JA, Aust SD. [30] Microsomal lipid peroxidation.  Methods Enzymol. 52: Elsevier; 1978. p. 302-10.
18.    Blanco A, Moyano R, Vivo J, Flores-Acuna R, Molina A, Blanco C, et al. Quantitative changes in the testicular structure in mice exposed to low doses of cadmium. Environ Toxicol Pharmacol. 2007;23(1):96-101.
19.    Adamkovicova M, Toman R, Cabaj M, Massanyi P, Martiniakova M, Omelka R, et al. Effects of subchronic exposure to cadmium and diazinon on testis and epididymis in rats. Sci World J. 2014;2014:632581.
20.    do Carmo Cupertino M, Novaes RD, Santos EC, Bastos DSS, dos Santos DCM, Fialho MdCQ, et al. Cadmium-induced testicular damage is associated with mineral imbalance, increased antioxidant enzymes activity and protein oxidation in rats. Life Sci. 2017;175:23-30.
21.    Cupertino MC, Novaes RD, Santos EC, Neves AC, Silva E, Oliveira JA, et al. Differential Susceptibility of Germ and Leydig Cells to Cadmium-Mediated Toxicity: Impact on Testis Structure, Adiponectin Levels, and Steroidogenesis. Oxid Med Cell Longev. 2017;2017:3405089.
22.    Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981-90.
23.    Pillai A, Gupta S. Antioxidant enzyme activity and lipid peroxidation in liver of female rats co-exposed to lead and cadmium: effects of vitamin E and Mn2+. Free Radic Res. 2005;39(7):707-12.
24.    Kara H, Cevik A, Konar V, Dayangac A, Yilmaz M. Protective effects of antioxidants against cadmium-induced oxidative damage in rat testes. Biol Trace Elem Res. 2007;120(1-3):205-11.
25.    Samarghandian S, Azimi-Nezhad M, Shabestari MM, Azad FJ, Farkhondeh T, Bafandeh F. Effect of chronic exposure to cadmium on serum lipid, lipoprotein and oxidative stress indices in male rats. Interdiscip Toxicol. 2015;8(3):151-4.
26.    Manca D, Ricard A, Trottier B, Chevalier G. In vitro susceptibilities of rat tissues to cadmium-induced lipid peroxidation: comparison of evolved hydrocarbons and thiobarbituric acid reactive substances. In Vitro Toxicol. 1990;3(3):255-67.
27.    Chakraborty S, Singh OP, Dasgupta A, Mandal N, Das HN. Correlation between lipid peroxidation-induced TBARS level and disease severity in obsessive–compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(2):363-6.
28.    Jakovljevic B, Novakov-Mikic A, Brkic S, Bogavac MA, Tomic S, Miler V. Lipid peroxidation in the first trimester of pregnancy. J Matern Fetal Neonatal Med. 2012;25(8):1316-8.
29.    Saleh H, Golian A, Kermanshahi H, Mirakzehi M. Antioxidant status and thigh meat quality of broiler chickens fed diet supplemented with α-tocopherolacetate, pomegranate pomace and pomegranate pomace extract. Ital J Anim Sci. 2018;17(2):386-95.