Molecular identification and phylogenetic analysis of Chlamydophila abortus isolated from sheep and goats

Document Type : Research Article


1 Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.

2 Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.


Chlamydophila abortus is one of the major causes of pregnancy failure (abortion) in sheep and goats in many countries. In the present study, milk samples from sheep and goat herds of West Azerbaijan, Iran were examined for C. abortus using PCR and nucleotide sequencing. A total number of 360 milk samples were randomly collected from sheep (n=180) and goats (n=180) of three different regions of West Azerbaijan province during 2018. DNA was isolated from samples and the nested-PCR was employed targeting the 16S rRNA gene for detection of Chlamydia spp. The omp gene was amplified and sequenced for the characterization of detected C. abortus.The results showed that 8.61% (95% CI: 6.13%–11.96%) of the examined samples (11.67% sheep and 5.56% goat milk samples) were positive for C. abortus. The frequency of positive samples in the central region was significantly higher than in other regions. Positive samples for C. abortus from animals with a history of abortion were significantly higher than those without a history of abortion. Positive samples in autumn were significantly higher than the other seasons and also, in animals more than four years old were significantly higher than other age groups. Sheep infection was significantly higher than the goats. Phylogenetic analysis based on the helicase gene showed that two sequenced isolates clustered closely with the other C. abortus isolates reported in the GenBank. In conclusion, small ruminants in West Azerbaijan province were contaminated with C. abortus and they could shed this organism into the milk.


1.    Selim A. Chlamydophila abortus Infection in Small Ruminants: A Review. Asian J Anim Vet Adv. 2016; 11:587-93.
2.    Longbottom D, Coulter L. Animal chlamydioses and zoonotic implications. J Comp Path. 2003; 128(4):217-44.
3.    Rodolakis A, Mohamad KY. Zoonotic potential of Chlamydophila. Vet Microbiol. 2010; 140(3-4):382-91.
4.    Sachse K, Vretou E, Livingstone M, Borel N, Pospischil A, Longbottom D. Recent developments in the laboratory diagnosis of chlamydial infections. Vet Microbiol. 2009; 135(1-2):2-21.
5.    Aitken I, Longbottom D. Chlamydial abortion. Diseases of sheep. 2007; 4(16):105-12.
6.    Morgan K, Wills J, Howard P, Williams . Isolation of Chlamydia psittaci from the genital tract of lambs: a possible link with enzootic abortion of ewes. Vet Rec. 1998; 123 (15): 399-400.
7.    Livingstone M, Wheelhouse N, Ensor H, Rocchi M, Maley S, Aitchison K, et al. Pathogenic outcome following experimental infection of sheep with Chlamydia abortus variant strains LLG and POS. PLoS One. 2017; 12(5):e0177653.
8.    Longbottom D, Fairley S, Chapman S, Psarrou E, Vretou E, Livingstone M. Serological diagnosis of ovine enzootic abortion by enzyme-linked immunosorbent assay with a recombinant protein fragment of the polymorphic outer membrane protein POMP90 of Chlamydophila abortus. J Clin Microbiol. 2002; 40(11):4235-43.
9.    O'Neill L, Keane O, Ross P, Nally J, Seshu J, Markey B. Evaluation of protective and immune responses following vaccination with recombinant MIP and CPAF from Chlamydia abortus as novel vaccines for enzootic abortion of ewes. Vaccine. 2019; 37(36):5428-38.
10.    Arif ED, Saeed NM, Rachid SK. Isolation and Identification of Chlamydia abortus from Aborted Ewes in Sulaimani Province, Northern Iraq. Pol J Microbiol. 2020; 69(1):65.
11.    Barati S, Moori-Bakhtiari N, Najafabadi MG, Momtaz H, Shokuhizadeh L. The role of zoonotic chlamydial agents in ruminants abortion. Iran J Microbiol. 2017; 9(5):288-94.
12.    Everett KD. Chlamydia and Chlamydiales: more than meets the eye. Vet Microbiol. 2000; 75(2):109-26.
13.    Shatleh-Rantisi D, Tamimi A, Ashhab Y. Improving sensitivity of single tube nested PCR to detect fastidious microorganisms. Heliyon. 2020; 6(1):e03246.
14.    Thomson NR, Yeats C, Bell K, Holden MT, Bentley SD, Livingstone M, et al. The Chlamydophila abortus genome sequence reveals an array of variable proteins that contribute to interspecies variation. Genome research. 2005; 15(5):629-40.
15.    Sait M, Clark EM, Wheelhouse N, Livingstone M, Spalding L, Siarkou VI, et al. Genome sequence of the Chlamydophila abortus variant strain LLG. American Society For Microbiology. 2011; 193(16): 4276-4277.
16.    Joseph SJ, Marti H, Didelot X, Castillo-Ramirez S, Read TD, Dean D. Chlamydiaceae genomics reveals interspecies admixture and the recent evolution of Chlamydia abortus infecting lower mammalian species and humans. Genome biol evol. 2015; 7(11):3070-84.
17.    Siarkou VI, Vorimore F, Vicari N, Magnino S, Rodolakis A, Pannekoek Y, et al. Diversification and distribution of ruminant Chlamydia abortus clones assessed by MLST and MLVA. PLoS One. 2015; 10(5).
18.    Laroucau K, Vorimore F, Bertin C, Mohamd KY, Thierry S, Hermann W, et al. Genotyping of Chlamydophila abortus strains by multilocus VNTR analysis. Vet Microbiol. 2009; 137(3-4):335-44.
19.    Herrmann B, Isaksson J, Ryberg M, Tångrot J, Saleh I, Versteeg B, et al. Global multilocus sequence type analysis of Chlamydia trachomatis strains from 16 countries. J Clin Microbiol. 2015; 53(7):2172-9.
20.    Goff J, Horst R. Physiological changes at parturition and their relationship to metabolic disorders1, 2. J Dairy Sci. 1997; 80(7):1260-8.
21.    Messmer TO, Skelton SK, Moroney JF, Daugharty H, Fields BS. Application of a nested, multiplex PCR to psittacosis outbreaks. J Clin Microbiol. 1997; 35(8):2043-6.
22.    Li Z, Cao X, Fu B, Chao Y, Cai J, Zhou J. Identification and characterization of Chlamydia abortus isolates from yaks in Qinghai, China. Biomed Res Int. 2015; 1-6.
23.    Cantekin Z, Solmaz H, Ergun Y, Ozmen M. Development of Polymerase Chain Reaction assays with host-specific internal controls for Chlamydophila abortus. Veterinarni Medicina. 2015; 60(1):1-5.
24.    Iraninezhad Z, Azizzadeh M, Taghavi Razavizadeh A, Mehrzad J, Rashtibaf M, editors. Seroepidemiological feature of Chlamydia abortus in sheep and goat population located in northeastern Iran. Veterinary Research Forum; 2020: Faculty of Veterinary Medicine, Urmia University.
25.    Mahzounieh MR, Khoei HH, Niknejad M, Yektaneh F. Molecular detection of Chlamydia psittaci in fecal samples of asymptomatic parrots in Mazandaran, Iran. Pajoohandeh Journal. 2014; 18(6):337-43.
26.    Mahzouniyeh M. Golboui daghdari SH, Pourahmad R. Detection of Chlamydophila abortus abortions in sheep in the Chaharmahal-va-Bakhtiyari province, using Nested PCR. Vet J. 2014; 2:80-74.
27.    Campos-Hernández E, Vázquez-Chagoyán JC, Salem AZ, Saltijeral-Oaxaca JA, Escalante-Ochoa C, López-Heydeck SM, et al. Prevalence and molecular identification of Chlamydia abortus in commercial dairy goat farms in a hot region in Mexico. Trop Anim Health Prod. 2014; 46(6):919-24.
28.    Ghorbanpoor M, Bakhtiari N-M, Mayahi M, Moridveisi H. Detection of Chlamydophila psittaci from pigeons by polymerase chain reaction in Ahvaz. Iran J Microbiol. 2015; 7(1):18.
29.    Pinheiro Junior JW, Mota RA, Piatti RM, Oliveira AAdF, Silva AMd, Abreu SRdO, et al. Seroprevalence of antibodies to Chlamydophila abortus in ovine in the State of Alagoas, Brazil. Braz J Microbiol. 2010; 41:358-64.
30.    Huang S, Wu S, Xu M, Zhou D, Danba C, Gong G, et al. First record of Chlamydia abortus seroprevalence in Tibetan sheep in Tibet, China. Small Rumin Res. 2013; 112(1-3):243-5.
31.    Rocchi MS, Wattegedera S, Meridiani I, Entrican G. Protective adaptive immunity to Chlamydophila abortus infection and control of ovine enzootic abortion (OEA). Vet Microbiol. 2009; 135(1-2):112-21.
32.    Güler L, Hadimli H, Erganiş O, Ateş M, Ok Ü, Gündüz K. Field evaluation of a PCR for the diagnosis of chlamydial abortion in sheep. Vet Rec. 2006; 159(22):742-5.
33.    Zaibet L, Hammami S, Jabbar M. Sustainability of small ruminant production systems in Tunisia: A health marketing approach: International Livestock Research Institute. 2008; 17(5): 86-90.
34.    Hireche S, Bouaziz O, Djenna D, Boussena S, Aimeur R, Kabouia R, et al. Seroprevalence and risk factors associated with Chlamydophila spp. infection in ewes in the northeast of Algeria. Trop Anim Health Prod. 2014; 46(2):467-73.
35.    McCauley L, Lancaster M, Butler K, Ainsworth C. Serological analysis of Chlamydophila abortus in Australian sheep and implications for the rejection of breeder sheep for export. Aust Vet J. 2010; 88(1‐2):32-8.
36.    Cubero-Pablo M, Plaza M, Pérez L, González M, León-Vizcaíno L. Seroepidemiology of chlamydial infections of wild ruminants in Spain. J Wildl Dis. 2000; 36(1):35-47.
37.    Öngör H, Cetinkaya B, Acik M, Karahan M, Bulut H. Detection of Chlamydophila abortus in Ovine Milk by Immunomagnetic Separation–Polymerase Chain Reaction. J Vet Med Seri B. 2004; 51(1):43-5.
38.    Berri M, Bernard F, Lecu A, Ollivet-Courtois F, Rodolakis A. Molecular characterisation and ovine live vaccine 1B evaluation toward a Chlamydophila abortus strain isolated from springbok antelope abortion. Vet Microbiol. 2004; 103(3-4):231-40.
39.    Berri M, Rekiki A, Boumedine KS, Rodolakis A. Simultaneous differential detection of Chlamydophila abortus, Chlamydophila pecorum and Coxiella burnetii from aborted ruminant's clinical samples using multiplex PCR. BMC Microbiol. 2009; 9(1):130.
40.    Godin A-C, Björkman C, Englund S, Johansson K-E, Niskanen R, Alenius S. Investigation of Chlamydophila spp. in dairy cows with reproductive disorders. Acta Vet Scand. 2008; 50(1):39.
41.    DeGraves FJ, Gao D, Hehnen H-R, Schlapp T, Kaltenboeck B. Quantitative detection of Chlamydia psittaci and C. pecorum by high-sensitivity real-time PCR reveals high prevalence of vaginal infection in cattle. J Clin Microbiol. 2003; 41(4):1726-9.
42.    Kemmerling K, Müller U, Mielenz M, Sauerwein H. Chlamydophila species in dairy farms: polymerase chain reaction prevalence, disease association, and risk factors identified in a cross-sectional study in western Germany. J Dairy Sci. 2009; 92(9):4347-54.
43.    Osman K, Ali H, ElJakee J, Galal H. Chlamydophila psittaci and Chlamydophila pecorum infections in goats and sheep in Egypt. Rev Sci Tech. 2011; 30(3):939.
44.    Aitken I, Clarkson M, Linklater K. Enzootic abortion of ewes. Vet Rec. 1990; 126(6):136.
45.    Esmaili H., Hamedi M., Boromanfar S. RE. National Guidelines for diagnosis, investigation and management of abortion complications ruminants. Theran: Academic Press, . 1391:103-10.
46.    Qin S-Y, Huang S-Y, Yin M-Y, Tan Q-D, Liu G-X, Zhou D-H, et al. Seroprevalence and risk factors of Chlamydia abortus infection in free-ranging white yaks in China. BMC veterinary research. 2015; 11(1):8.
47.    Qin S-Y, Yin M-Y, Cong W, Zhou D-H, Zhang X-X, Zhao Q, et al. Seroprevalence and risk factors of Chlamydia abortus infection in Tibetan sheep in Gansu province, northwest China. The Scientific World Journal. 2014; 1-6.
48.    Hu S-F, Li F, Zheng W-B, Liu G-H. Seroprevalence and risk factors of Chlamydia abortus infection in goats in hunan province, subtropical China. Vector Borne Zoonotic Dis. 2018; 18(9):500-3.
49.    Seth-Smith H, Busó LS, Livingstone M, Sait M, Harris S, Aitchison K, et al. European Chlamydia abortus livestock isolate genomes reveal unusual stability and limited diversity, reflected in geographical signatures. BMC genomics. 2017; 18(1):1-10.