Phylogenetic group determination of Escherichia coli isolated from broilers and layers with colibacillosis

Document Type : Research Articles

Authors

1 Ferdowsi University of Mashhad

2 University of Tehran

Abstract

Colibacillosis is of the most common infectious bacterial diseases of poultry.A total of 170 Escherichia coli isolates obtained from broiler and layer flocks implicated with colibacillosis between 2011 and 2014 were subjected to phylogenetic analysis. Among 150 E. coli isolates from typical lesions of local and systemic colibacillosis, 54 (31.8%), 37 (21.7%), 36 (21.2%) and 43 (25.3%) isolates determined as belonged to groups A, B1, B2 and D, respectively. The distribution of phylogenetic types for 20 isolates, obtained from apparently healthy birds as controls, were 9 (45%), 5 (25%), 1 (5%) and 5 (25%) for A, B1, B2 and D, respectively. Overall, the phylogenetic Determination revealed the B2 groups as predominant isolates in diseased birds, whereas the A group was apparently predominant in healthy birds. Results of this study represent genotypic diversity among different manifestations of avian colibacillosis.

Keywords


Abdallah, K.S., Cao, Y. and Wei, D.J. (2011) Epidemiologic Investigation of Extra-intestinal pathogenic E. coli (ExPEC) based on PCR phylogenetic group and fimH single nucleotide polymorphisms (SNPs) in China. International Journal of Molecular Epidemiology and Genetics 2, 339-353.
Asai, T., Masani, K., Sato, C., Hiki, M., Usui, M., Baba, K., et al. (2011). Phylogenetic groups and cephalosporin resistance genes of Escherichia coli from diseased food-producing animals in Japan. Acta Veterinaria Scandinavica 53, 52-52.
Bashir S., H.A., Sarwar, Y., Anwar A., Anwar M. (2012). Virulence profile of different phylogenetic groups of locally isolated community acquired uropathogenicE. coli from Faisalabad region of Pakistan. Annals of Clinical Microbiology and Antimicrobials 11:23.
Bergthorsson, U. and Ochman, H. (1998). Distribution of chromosome length variation in natural isolates of Escherichia coli. Molecular Biology and Evolution 15, 6-16.
Bingen, E., Picard, B., Brahimi, N., Mathy, S., Desjardins, P., Elion, J., et al. (1998). Phylogenetic analysis of Escherichia coli strains causing neonatal meningitis suggests horizontal gene transfer from a predominant pool of highly virulent B2 group strains. The Journal of Infectious Diseases 177, 642-650.
Bingen, E.H., Denamur, E. and Elion, J. (1994). Use of ribotyping in epidemiological surveillance of nosocomial outbreaks. Clinical Microbiology Reviews 7, 311-327.
Carlos, C., Pires, M.M., Stoppe, N.C., Hachich, E.M., Sato, M.I., Gomes, T.A., et al. (2010). Escherichia coli phylogenetic group determination and its application in the identification of the major animal source of fecal contamination. BMC Microbiol 10: 161.
Clermont, O., Bonacorsi, S. and Bingen, E. (2000). Rapid and simple determination of the Escherichia coli phylogenetic group. Applied Environmental Microbiology 66, 4555-4558.
Clermont, O., Christenson, J.K., Denamur, E. and Gordon, D.M. (2013). The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environmental Microbiology Reports 5, 58-65.
Swayne, D.E., Glisson, J.R, McDougald, L.R., Nolan, L.K., Suarez, D.L. and Venugopal, L.N. (2013). Diseases of poultry, 13th ed.
Desjardins, P., Picard, B., Kaltenbock, B., Elion, J. and Denamur, E. (1995). Sex in Escherichia coli does not disrupt the clonal structure of the population: evidence from random amplified polymorphic DNA and restriction-fragment-length polymorphism. Journal of Molecular Evolution 41, 440-448.
Diamant, E., Palti, Y., Gur-Arie, R., Cohen, H., Hallerman, E.M. and Kashi, Y. (2004). Phylogeny and strain typing of Escherichia coli, inferred from variation at mononucleotide repeat loci. Applied Environmental Microbiology 70, 2464-2473.
Duriez, P., Clermont, O., Bonacorsi, S., Bingen, E., Chaventre, A., Elion, J., et al. (2001). Commensal Escherichia coli isolates are phylogenetically distributed among geographically distinct human populations. Microbiology 147, 1671-1676.
Escobar-Paramo, P., Clermont, O., Blanc-Potard, A.B., Bui, H., Le Bouguenec, C. and Denamur, E. (2004). A specific genetic background is required for acquisition and expression of virulence factors in Escherichia coli. Molecular Biology and Evolution 21, 1085-1094.
Gordon, D.M., Clermont, O., Tolley, H. &Denamur, E. (2008). Assigning Escherichia coli strains to phylogenetic groups: multi-locus sequence typing versus the PCR triplex method. Environmental Microbiology 10, 2484-2496.
Herzer, P.J., Inouye, S., Inouye, M. and Whittam, T.S. (1990). Phylogenetic distribution of branched RNA-linked multicopy single-stranded DNA among natural isolates of Escherichia coli. Journal of Bacteriology 172, 6175-6181.
Johnson, J.R., Delavari, P., Kuskowski, M. and Stell, A.L. (2001). Phylogenetic distribution of extraintestinal virulence-associated traits in Escherichia coli. Journal of Infection Diseases 183, 78-88.
Johnson, T.J., Kariyawasam, S., Wannemuehler, Y., Mangiamele, P., Johnson, S.J., Doetkott, C., et al. (2007). The genome sequence of avian pathogenic Escherichia coli strain O1:K1:H7 shares strong similarities with human extraintestinal pathogenic E. coli genomes. Journal of Bacteriology 189, 3228-3236.
Johnson T.J., Wannemuehler, Y., Johnson S.J., Stell, A.L., Doetkott, C., Johnson J.R., Kim, K.S., Spanjaard, L. and Nolan, L.K. (2008). Comparison of extraintestinal pathogenic Escherichia coli strains from human and avian sources reveals a mixed subset representing potential zoonotic pathogens. Applied and Environmental Microbiology, 74, 7043-7050.
Lay, K.K., Koowattananukul, C., Chansong, N. and Chuanchuen, R. (2012). Antimicrobial resistance, virulence, and phylogenetic characteristics of Escherichia coli isolates from clinically healthy swine. Foodborne Pathogens and Diseases 9, 992-1001.
Lecointre, G., Rachdi, L., Darlu, P. and Denamur, E. (1998). Escherichia coli molecular phylogeny using the incongruence length difference test. Molecular Biology and Evolution 15, 1685-1695.
Lee, C.C.Y. (2011). Genotyping Escherichia coli Isolates from Duck, Goose, and Gull Fecal Samples with Phylogenetic Markers using Multiplex Polymerase Chain Reaction for Application in Microbial Source Tracking. Journal of Experimental Microbiology and Immunology 15, 130 – 135.
Moulin-Schouleur, M., Reperant, M., Laurent, S., Bree, A., Mignon-Grasteau, S., Germon, P., et al. (2007). Extraintestinal pathogenic Escherichia coli strains of avian and human origin: link between phylogenetic relationships and common virulence patterns. Journal of Clinical Microbiology 45, 3366-3376.
Picard, B., Garcia, J.S., Gouriou, S., Duriez, P., Brahimi, N., Bingen, E., et al. (1999). The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infection and Immunity 67, 546-553.
Reid, S.D., Herbelin, C.J., Bumbaugh, A.C., Selander, R.K. and Whittam, T.S. (2000). Parallel evolution of virulence in pathogenic Escherichia coli. Nature 406, 64-67.
Sabarinath, A., Tiwari K.P., Deallie, C., Belot, G.,Vanpee, G., Matthew, V., Sharma, R., Hariharan, H. (2011). Antimicrobial Resistance and Phylogenetic Groups of Commensal Escherichia Coli Isolates from Healthy Pigs in Grenada. Veterinary Medicine 2.
Selander, R.K., Caugant, D.A., Ochman, H., Musser, J.M., Gilmour, M.N. and Whittam, T.S. (1986). Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Applied Environmental Microbiology 51, 873-884.
Urwin, R. and Maiden, M.C. (2003). Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiology 11, 479-487.
Walk, S.T., Alm, E.W., Calhoun, L.M., Mladonicky, J.M. &Whittam, T.S. (2007). Genetic diversity and population structure of Escherichia coli isolated from freshwater beaches. Environmental Microbiology 9, 2274-2288.
Wirth, T., Falush, D., Lan, R., Colles, F., Mensa, P., Wieler, L.H., et al. (2006). Sex and virulence in Escherichia coli: an evolutionary perspective. Molecular Microbiology 60, 1136-1151.