Investigation of the Antibacterial Effect of Venom of the Iranian Snake Echis carinatus

Document Type : Research Articles


1 Ferdowsi University of Mashhad

2 Razi Vaccine and Serum Research Institute


Although some venoms and their isolated compounds have been shown to have antibacterial properties, most have not been investigated for such activity. Echis carinatus is one of the most venomous snakes in the world and has an effective haematotoxic venom that destroys endothelial cells and causes haemorrhagia.
In this study, the antibacterial activity of Iranian snake Echis carinatus venom against six different bacteria (Staphylococcus aureus, Methicillin Resistant Staphylococcus aureus (MRSA), Listeria monocytogenes, Bacillus subtilis, Salmonella typhimurium and Escherichia coli O157:H7), were investigated. Crude venom (100µg/ml) and different standard antibiotic disks as positive controls were tested by the gel diffusion method. Since the results showed that Echis carinatus venom has a significant antibacterial effect against S. aureus and MRSA, the minimum inhibitory concentrations (MIC) were also determined for these two susceptible bacteria: this was 80µg ml-1 against both strains. Also, the results determined that Echis carinatus venom dose not have a noticeable effect on other tested bacteria.


Aloof-Hirsch, S., Devries, A. and Berger, A.(1968) The direct lytic factor of cobra venom: Purification and chemical characterization. Biochimistry and Biophysics Acta. 154, 53-60.
Ang, J.Y., Ezike, E. and Asmar, B.I. (2004) Antibacterial resistance. Symposium series Society for Applied Microbiology Ser Soc Appl Microbiol. 3, 229-239.
Backshall, S. (2007) Steve Backshall's venom:Poisonous creatures in the natural world.New Holland publishers (UK) Ltd, London.
Barbosa, P.S. Martins, A.M. Havt, A. Toyama,D.O. Evangelhista, J.S. Ferreira, D.P.Joazeiro, P.P. Beriam, I.O. Toyama, M.H.
Fonteles, M.C. and Monterio, H.S. (2005) A renal and antibacterial effects induced by myotoxin I and II isolated from Bothrps jararacussu venom. Toxicon 46, 376-386.
Bauer, A.W. Kirby, W.M. Sherris, J.C. and Turck, M. (1966) Antibiotic susceptibility testing by a standardized single disk method.American Journal of Clinical Pathology 45(4), 493-496.
Benli, M. and Yigit, N. (2008) Antibacterial activity of venom from funnel web spider Agelena labyrinthica (Araneae: Agelenidae).
Journal of Venomous Animals and Toxins including Tropical Diseases 17 (4), 641-650.
Budnik, B.A. Olsen, J.V. Egorov, T.V.Anisimova, V.E. Galkina, TG. Musolyamov,A.K. Grishin E.V. and Zubarev, R.A. (2004)
De novo sequencing of antimicrobial peptides isolated from the venom glands of the wolfspider Lycosa singoriensis. Journal
of Mass Spectrometry 39, 193-201.
Conde, R. Zamudio, F.Z. Rodtiguez, M.H. and Possani, L.D. (2000) Scorpine, an antimalaria and anti-bacterial agent purified
from scorpion venom. Federation of European Biochemical Societies 471, 165-168.
Corzo, G. Villegas, E. Go mez-Lagunas, F.Possani, L.D. Belokoneva, O.S. and Nakajima, T. (2002) Oxyopinins, large
amphipathic peptides isolated from the venom of the wolf spider Oxyopes kitabensis with cytolytic properties and positive
insecticidal cooperativity with spider neurotoxins. Journal of biological chemistry 277, 23627-23637.
Dani, M.P. Richards, E.H. Isaac, R.E. and Edwards, J.P. (2003) Antibacterial proteolytic activity in venom from the
endoparasitic wasp Pimpla hypochondriaca (Hymenoptera: Ichneumonidae). Journal of Insect Physiology 49, 945-954.
Fennell, J.F. Shipman, W.H. and Cole, L.J.(1967) Antibacterial action of a bee venom fraction (melittin) against a enicillinresistant
Staphylococcus and other microorganisms. Research and Development Technical Report 5, 1-13.
Fennell, J.F., Shipman, W.H. and Cole, L.J.(1968) Antibacterial action of melittin,polypeptide from bee venom (32779). The
actions of melittin on membranes.Proceedings of the Society for Experimental Biology and Medicine 127 (3), 707-710.
Garesky, V. M., Lumma, P. K., Freidinger, R.M., Pitzenberger, S. M., Randall, W. C.,Veber, D. F., Gould, R. J., and Friedman, P.
A., 1989. Chemical synthesis of echistatin, a potent inhibitor of platelet aggregation from Echis carinatus: synthesis and biological
activity of selected analogs. Proceeding of the National Academy Sciences of the United States of America 86, 4022-4026.
Gawade, P.S., 2007. Therapeutic alternatives from venoms and toxins. Indian Journal of Pharmacology 39 (6), 260-264.
Glasser, H.R.S., 1948. Bactericidal activity of Crotalus venom in vitro. Copeia. 4, 245-247.
Guerranti, R., Aguiyi, J.C., Neri, S., Leoncini,R., Pagani, R., Marinello, E., 2002. Proteins from Mucuna pruriens and enzymes from Echis carinatus venom: characterization and cross-reactions. The Journal of Biological Chemistry 277, 17072-17078.
Haeberli, S., Kuhn-Nentwing, L., Schaller, J.,Nentwig, W., 2000. Characterisation of antibacterial activity of peptides isolated
from the venom of the spider Cupiennius Salei. Toxicon 38, 373-380.
Harvey,A.L.,Robertson,B.,2004.Dendrotoxins:structure-activity relationships and effects on potassium ion channels. Current Medicinal Chemistry 11, 3065-3072.
Jenssen, H., Hamill, P., Hancock, R.E.W., 2006.Peptide antimicrobial agents. Clinical Microbiology Review 19 (3), 491-511.
Kemparaju, K., Prasad, N.B., Gowda, V.T.,1994. Purification of a basic phospholipase A2 from Indian saw-scaled viper (Echis
carinatus) venom:characterization of antigenic, catalytic and
pharmacological properties. Toxicon 32 (10),1187-1196.
Koh, D.C., Armugam, A., Jeyaseelan, K., 2006.Snake venom components and their applications in biomedicine. Cellular and
Molecular Life Sciences 63, 3030-3041.
Kozlov, S.A., Vassilevski, A.V., Feofanov,A.Y., Surovoy, D.V., Karpunin, E.V.,Grishin, E., 2006. Latarcins antimicrobial
and cytolytic peptides from venom of the spider Lachesana tarabaevi (Zodariidae) that exemplify biomolecular diversity. Journal of Biological Chemistry 281 (30), 20983-20992.
Nowak, G., 2004. The Ecarin clotting time, a universal methos to quantify direct thrombin inhibitors. Pathophysiology of Haemostasis and Thrombosis 4 (33), 173-183.
Nunez, V.,Arce, V., Gutierrez, J.M., Lomonte,B., 2004. Structural and functional characterization of myotoxin I, a Lys49
phospholipase A2 homologue from the of the snake Bothrops atrox venom. Toxicon 44(1), 91-101.
Permual Samy, R., Gopalakrishnakone, P.,Thwin, M.M., Chow, T.K.V., Bow, H., Hain,Y.E., Thong, T.W.J., 2007. Antibacterial
activity of snake, scorpion and bee venoms:a comparison with purified venom phospholipase A2 enzymes. Journal of
Applied Microbiology 102, 650-659.
Permual Samy, R., Pachiappan, A.,Gopalakrishnakone, P., Thwin, M.M., Hian,Y.E., Chow, T.K.V., Bow, H., Weng, J.T.,2006. In vitro antibacterial activity of natural toxins and animal venoms tested against Burkholderia pseudomallei. BMC Infectious Diseases 6 (100), 1-16.
Raghunath, D., 2008. Emerging antibiotic resistance in bacteria with special reference to Indian. Journal of Biosciences. 33 (4),
Shittu, L.A.J., Bankole, M.A., Ahmed, T.,Bankole, M.N., Shittu, R.K., Saalu, C.L.,Ashiru, O.A., 2007. Antibacterial and antifungal activities of essential oils of crude extracts of Sesame Radiatum against some common pathogenic micro-organism.Iranian Journal of pharmacology and Therapeutics (IJPT) 6, 165-170.
Stiles, B.G., Sexton, F.W., Weinstein, S.A.,1991. Antibacterial effects of different snake venoms: purification and characterization of antibacterial proteins from Pseudechis
australis (Australian king brown or Mulga snake) venom. Toxicon 29, 1129-1141.
Tans, G., Rosing, J., 2001. Snake venom activators of factor X: an overview.Haemostasis 31, 225-233.
Torres-Larios, A., Gurrola, G.B., Zamudio, F.Z.,Possani, L.D., 2002. Hadrurin, a new antimicrobial peptide from the venom of the scorpion Hadrurus aztecus. European Journal of Biochemistry 267, 5023-5031.
Wenhua, R., Shuangquan, Z., Daxiang, S.,Kaiya, Z., Guang, Y., 2006. Induction,purification and characterization of an
antibacterial peptide scolopendrin I from the venom of centipede Scolopendra subspinipes multilans. Indian Journal of Biochemistry & Biophysics 43, 88-93.
Wu, M., Hancock, R.E.W., 1999. Improved Derivatives of Bactenecin, a Cyclic Dodecameric Antimicrobial Cationic
Peptide. American Society for Microbiology 43 (5), 1274-1276.
Xu, C., Ma, D., Yu, H., Li, Z., Liang, J., Lin, G.,Zhang, Y., Lai, R., 2007. A bactericidal homodimeric phospholipases A2 from
Bungarus Fasciatus venom. Peptides 28 (5),969-973.
Yan, L., Adams, M.E., 1998. Lycotoxins,antimicrobial peptides from venom of the wolf spider Lycosa carolinensis. Journal of
Biological Chemistry 273, 2059-2066.