Iranian Journal of Veterinary Science and Technology

EDITOR-IN-CHIEF
Mehrdad Mohri
Professor of Department of Clinical Sciences, and Center of Excellence in Ruminant Abortion and Neonatal Mortality, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.

EDITORIAL BOARD

Mehrdad Ameri
Professor, Department of Clinical Pathology, GlaxoSmithKline, King of Prussia, PA, USA

Javad Ashrafi Helan
Professor, Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran

Mohammad Reza Aslani
Professor, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Shahrekord, Shahrekord, Iran

Mohammad Mehdi Dehghan
Professor, Department of Surgery & Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran

Farhid Hemmatzadeh
Associate Professor, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, Australia

Mohammad Khalili
Professor, Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran

Perham Mirshokraei
Associate Professor, Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

Mehrdad Mohri
Professor, Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

Abolghasem Nabipour
Professor, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

Amin Nematollahi
Associate Professor, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Shahrekord, Shahrekord, Iran

Abbas Parham
Associate Professor, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

Gholam Reza Razmi
Professor, Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University Of Mashhad, Mashhad, Iran

Astrid B. M. Rijkenhuizen
Professor, Veterinary Clinic Duurstede, Wijk bij Duurstede, The Netherlands University of Veterinary Medicine, Vienna, Austria

Ali Asghar Sarchahi
Professor, Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

Hesam A. Seifi
Professor, Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

Fakhri Shahidi
Professor, Department of Food Science Industry, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

Kamran Sharifi
Associate Professor, Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

Alfonso Zeconni
Professor, Department of Veterinary Sciences and Public Health, University of Milan, Milan, Italy

Mehrdad Mohri
Professor, Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
GENERAL INFORMATION

ISSN Print Edition: 2008-465X
ISSN Online Edition: 2423-6306

Journal Homepage:
ijvst.um.ac.ir

Copyright:
@ 2022 Ferdowsi University of Mashhad (Iran). All rights reserved. For Open Access articles published after 2012, Creative Commons license conditions apply. Please see the journal homepage for license conditions. This publication, the website, and the website content are the property of the Ferdowsi University of Mashhad. No part of the content of this publication or the website may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.

Disclaimer:
The statements, opinions, and data contained in IJVST issues are solely those of the individual authors and contributors and not of the publisher and the editor(s). The appearance of advertisements in the IJVST journal and on the website is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality, or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions, or products referred to in the content or advertisements.

Abstracting and Indexing:
Scopus, ISI Master Journal List, Zoological Record; EMBASE, EBSCO, MIAR, Scientific Information Database (SID); Islamic World Science Citation Database (ISCI); Magiran; Google Scholar; Centre for Agriculture and Biosciences International (CABI), DOAJ.

This journal has achieved the rating of:

Publication Date:
Iranian Journal of Veterinary Science and Technology (IJVST) is published 4 times a year. Volume 14 with 4 issues appear in 2022.

Managing Director:
Abolghassem Naghibi, DVM, PhD

Editorial Officer:
Monir Taheri

Logo Design and Illustration:
Dr. Behrooz Fathi, Taraneh Ebnalnassir

Language Editors:
Dr. Negar Karimi & Emad Tayyebi

SCOPE

Iranian Journal of Veterinary Science and Technology (IJVST) publishes important research advances in veterinary medicine and subject areas relevant to veterinary medicine including anatomy, physiology, pharmacology, bacteriology, biochemistry, biotechnology, food hygiene, public health, immunology, molecular biology, parasitology, pathology, virology, large and small animal medicine, poultry diseases, diseases of equine species, and aquaculture. Articles can comprise research findings in basic sciences, as well as applied veterinary findings and experimental studies and their impact on diagnosis, treatment, and prevention of diseases. IJVST publishes four kinds of manuscripts: Research Article, Review Article, Short Communication, and Case Report.

ON THE COVER

The Caspian cobra, Naja naja oxiana, is a highly venomous species of cobra. Its potent venom, with an LD50 value of 0.1 mg per kg, makes it one of the deadliest cobras. When threatened, it exhibits defensive behaviors, hood spreading and emitting hissing sound and strike repeatedly. The Caspian cobra’s envenomation can cause severe neurotoxic symptoms, intense pain, and pronounced swelling at the bite site. Its bites mortality rate is 70 to 75%, the highest among all species of cobras. In Central Asia, the Caspian cobra is responsible for a significant number of snake bite-related deaths (Photo & drawing by B. Fathi—see page 52).
TABLE OF CONTENTS

Aidin Azizpour, Zahra Amirajam

Causes for Carcass Condemnations of Slaughtered Poultry in the Industrial Slaughterhouse of Namin, Ardabil Province, Iran

1

Mojtaba Yousefi, Seyed Masoud Zolhavarieh, Alireza Nourian, Hossein Rezvan, Ali Sadeghi-nasab

Alterations in the Clinical Manifestations of Cutaneous Leishmaniasis in Various Total Antioxidant Capacities: An Animal Study Using BALB/c Mice

10

Firdausy Kurnia Maulana, Didik Handijatno

Computational Evaluation of the B-Cell Epitope of 37-kDa Outer Membrane Protein _H Pasteurella multocida_ Type B from Nusa Tenggara Timur, Indonesia

19

Seyyedeh Narjes Sadat, Sahar Khalvand, Behzad Ramezani, Mahdi Habibi-Anbouhi, Fatemeh Kazemi-Lomedasht, Hajarsadat Ghaderi, Mahdi Behdani

Recombinant Expression of Bornavirus P24 Protein for Enzyme-Linked Immunosorbent Assay Development

27

Saman Ahani, Siamak Alizadeh, Mohammad Reza Hosseinchi

Radiological and Anatomical Features of the Skull Bones of Adult Husky Dogs

33

Mahsa Soleimani, Alireza Shahrjerdi, Mitra Salehi

Molecular Identification of _Mycobacterium avium_ subsp. _Paratuberculosis_ isolated from ELISA-Positive Samples by Nested PCR

45

Behrooz Fathi

Investigation the Effects of hydroalcoholic extract of _Peganum harmala_ Against the Venom of the Iranian Snake _Naja naja oxiana_ in Mice

52
TABLE OF CONTENTS

Omid Azari, Seyed mahdi Ghamsari, Ali Roustaei, Omid Koohestani, Ahad Hassani

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large colon volvulus due to meconium impaction in a neonatal foal: a case report</td>
<td>60</td>
</tr>
<tr>
<td>Persian abstracts</td>
<td>66</td>
</tr>
<tr>
<td>Author index</td>
<td>73</td>
</tr>
<tr>
<td>Guide for authors</td>
<td>74</td>
</tr>
</tbody>
</table>
RESEARCH ARTICLE

Causes for Carcass Condemnations of Slaughtered Poultry in the Industrial Slaughterhouse of Namin, Ardabil Province, Iran

Aidin Azizpour, Zahra Amirajam

Abstract

Poultry meat production worldwide has continued to expand over the last two decades. In this regard, hygienic meat inspection and monitoring of diseases at slaughter lines have been recognized as essential for assessing flocks' status. This study aimed to determine the condemnation rate of slaughtered poultry and calculate the economic losses due to condemnations in the Namin industrial slaughterhouse, Ardabil Province of Iran. The data were collected by a veterinarian inspector in the slaughterhouse. The number of poultry slaughtered, their weight, the number and weight of condemned carcasses, and the reasons for condemnation were recorded. In this study, 3,488,916 poultry were slaughtered, and 42,310 carcasses (1.202%) were condemned, weighing 66,385 kg. The highest percentage of condemned poultry was observed in autumn (1.61%), and the lowest in spring (0.93%). The direct financial loss incurred due to condemnations was estimated to be as high as 153,067 USD. Septicemia and dead on arrival (DOA) were the most common reasons for the rejection of carcasses, accounting for 47.85% and 0.580 of the total condemnations and total slaughtered poultry, respectively. The highest frequency percentage of the condemnation due to diseases occurred during autumn. In contrast, summer had the highest condemnation rate in association with DOA. The current survey showed that diseases caused the most condemnations compared to other causes. Therefore, improving disease control programs on flocks and increasing the welfare of birds before slaughter is recommended.

Keywords

Condemned carcasses, Septicemia, Dead on arrival, Slaughterhouse, Namin

Abbreviations

DOA: Dead on arrival
USD: United States Dollar
DEL: Direct economic loss
NC: Number of condemned poultry carcasses

P: average price of poultry carcasses (USD/Kg)
W: average poultry carcasses weight (Kg).
RLCL = ratio of condemnation losses to total condemnation economic losses

Number of Figures: 1
Number of Tables: 4
Number of References: 25
Number of Pages: 9
Introduction

Regarding the importance of poultry production in providing the protein needed by human societies and the dramatical development of the poultry industry in recent decades, attention to hygienic carcass inspection in abattoirs has been increased to monitor production levels and assurance of meat quality [1]. Because of this issue, the need to establish and develop industrial slaughterhouses and hygienic inspection of slaughtered poultry has gained special importance, on the one hand, to prevent the transfer of live poultry to the consumption market as well as the spread of contamination caused by them, and on the other hand, to remove contaminated and unusable carcasses from the slaughter line by strict sanitary monitoring on the slaughter line. Finally, meat in completely hygienic conditions free from contamination and disease can be available to consumers [1-3].

Therefore, attention has shifted to the evaluation of the causes of carcass condemnation at slaughterhouses in many countries during recent decades. In a survey conducted from 2019 to 2020 in broiler slaughtered in Germany, the most common reasons for rejected carcasses were deep dermatitis (mean 0.63%) and ascites (mean 0.53%) [3]. Studies conducted over 6 years in the district of Olsztyn, Poland, showed that in the slaughterhouse inspection process, Mark’s disease (MD) was seen in the internal and external organs of 2265 chickens (0.095%) [4]. According to the research by Santana et al. [5] from January to April 2007 in Brazil, the most common cause for condemnation in slaughterhouse A was related to cellulitis (4.25%). Various factors such as infectious diseases, ascite/peritonitis, mechanical factors (impact), cachexia, dead on arrival (DOA), poisoning, and tumors have been reported, which caused the condemnation of carcasses during the inspection process in abattoirs [1, 3, 4, 6-12].

In addition, the increase in condemnation rate due to diseases and other abnormalities will finally lead to great economic losses in the poultry industry [13-15]. Therefore, this study aimed to determine the rate and the causes of condemned carcasses and estimate economic losses due to condemnations in industrial slaughterhouse in Namin, Ardabil province, for one year.

Abbreviations-Cont’d

CL: condemnation economic losses due to a specific cause (USD)
TL: total condemnation economic losses (USD)
RLSI= ratio of condemnation losses to total slaughter financial income
CL: condemnation economic losses due to a specific cause (USD)
TL: total slaughter financial income (USD)

Results

The total number of slaughtered poultry in the industrial slaughterhouse of Namin was 3,488,916, which included a total slaughter weight of 10,392,234 kg. During this study, 42,310 carcasses were condemned, accounting for 1.202% of the total slaughter and weighing 66,385 kg (Tables 1 and 2).

Statistical analysis shows a significant difference ($p < 0.001$) among the total number of condemnation carcasses in different seasons. Despite the high slaughter rate in summer compared to other seasons, autumn had the highest rate of condemnations while the least of it was observed in spring (Table 1).

There is a significant difference among different seasons regarding the weight of condemned poultry carcasses ($p < 0.001$). Thus, the lowest and highest weights of condemnations were in the spring and autumn seasons, respectively (Table 2).

The average annual direct economic loss due to condemnations is estimated at 4,089,058,000 Rial, equivalent to 153,067 USD. The highest economic loss was in autumn compared to other seasons (Table 3).

In this study, a total of nine reasons for the condemnation of carcasses were identified. The total number of condemnations and their percentage compared to the total number of condemned carcasses and slaughter are shown in Table 4. Of all condemned carcasses, the most condemnations, with 13,810 carcasses, were related to septicemia, which includes 32.64% of all condemnations and 0.396% of total slaughter. With 6,437 carcasses, 15.21% of total condemnations, and 0.184% of the total slaughter, DOA is in the second rank. The lowest condemned carcasses were due to contusion/fracture/bruising, with 0.20% of the total condemnations and 0.002% of the total slaughter. According to the findings from Table 4, from all condemned carcasses, the highest weight of condemnations, with a weight of 22,460 kg, was related to septicemia, which was included 33.83% and 0.216% of the total weight of the condemned carcasses and the total slaughter, respectively. The resulting losses were estimated at 49,511 USD. In the second rank was the DOA with a weight of 15,231 kg, which constituted 22.94% of the total weight of condemnations and 0.146% of the total slaughter weight, and economic losses caused by it were estimated at 37,069 USD. The lowest weight of condemned carcasses was due to contusion/fracture/bruising, with 0.21% of the total condemnations and 0.001% of the total slaughter. The economic loss related to it was calculated at 329 USD.

Frequency percentages of septicemia, ascites/peritonitis, poisoning, arthritis/synovitis, cachexia, cellulite, contusion/fracture/bruising, and CRD in autumn were higher than in other seasons. Whereas
Table 1.
Comparison of the total number of slaughtered and healthy carcasses and the total number of condemned carcasses in the industrial slaughterhouse of Namin during different seasons.

<table>
<thead>
<tr>
<th>Seasons</th>
<th>Number of slaughter</th>
<th>Number of healthy carcasses</th>
<th>Number of condemnations (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>April–June</td>
<td>797,819</td>
<td>790,388</td>
<td>7,431 (0.93)</td>
</tr>
<tr>
<td>July–September</td>
<td>984,560</td>
<td>971,656</td>
<td>12,904 (1.31)</td>
</tr>
<tr>
<td>October–December</td>
<td>906,207</td>
<td>892,107</td>
<td>14,100 (1.61)</td>
</tr>
<tr>
<td>January–March</td>
<td>800,330</td>
<td>792,455</td>
<td>7,875 (1.01)</td>
</tr>
<tr>
<td>Total</td>
<td>3,488,916</td>
<td>3,446,606</td>
<td>42,310 (1.20)</td>
</tr>
</tbody>
</table>

$\chi^2(3)=1532, p<0.001$

Table 2.
Comparison of net weight of slaughter and healthy carcasses and weight of condemned carcasses in the industrial slaughterhouse of Namin during different seasons.

<table>
<thead>
<tr>
<th>Seasons</th>
<th>Weight of slaughter</th>
<th>Weight of healthy carcasses</th>
<th>Weight of condemnations (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>April–June</td>
<td>2,473,930</td>
<td>2,462,270</td>
<td>11,660 (0.47)</td>
</tr>
<tr>
<td>July–September</td>
<td>2,905,204</td>
<td>2,884,665</td>
<td>20,539 (0.70)</td>
</tr>
<tr>
<td>October–December</td>
<td>2,797,645</td>
<td>2,774,396</td>
<td>23,249 (0.83)</td>
</tr>
<tr>
<td>January–March</td>
<td>2,215,455</td>
<td>2,204,518</td>
<td>10,937 (0.49)</td>
</tr>
<tr>
<td>Total</td>
<td>10,392,234</td>
<td>10,325,849</td>
<td>66,385 (0.63)</td>
</tr>
</tbody>
</table>

$\chi^2(3)=3696, p<0.001$

Table 3.
Comparison of economic income of slaughter and healthy carcasses and economic losses of condemnations in the industrial slaughterhouse of Namin during different seasons.

<table>
<thead>
<tr>
<th>Seasons</th>
<th>Economic income from slaughter</th>
<th>Economic income of healthy carcasses</th>
<th>Economic losses of condemnations (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>April–June</td>
<td>6,461,581</td>
<td>6,431,127</td>
<td>30,454 (0.47)</td>
</tr>
<tr>
<td>July–September</td>
<td>7,020,145</td>
<td>6,970,514</td>
<td>49,631 (0.70)</td>
</tr>
<tr>
<td>October–December</td>
<td>5,777,622</td>
<td>5,729,609</td>
<td>48,013 (0.83)</td>
</tr>
<tr>
<td>January–March</td>
<td>5,057,841</td>
<td>5,032,872</td>
<td>24,969 (0.49)</td>
</tr>
<tr>
<td>Total</td>
<td>24,317,189</td>
<td>24,164,122</td>
<td>153,067 (0.63)</td>
</tr>
</tbody>
</table>

$\chi^2(3)=5325, p<0.001$

summer had the highest frequency percentages of condemnations related to dead on arrival (Fig 1).
Table 4.
Number, weight and financial losses of condemned carcasses according to their causes in the slaughterhouse of Namin.

<table>
<thead>
<tr>
<th>Cause of condemnations</th>
<th>No.</th>
<th>CTC (%)</th>
<th>CTS (%)</th>
<th>WC Kg</th>
<th>RW CW (%)</th>
<th>RWSW (%)</th>
<th>ELC</th>
<th>RLCL (%)</th>
<th>RLSI (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Septicemia</td>
<td>13,810</td>
<td>32.64</td>
<td>0.396</td>
<td>22,460</td>
<td>33.83</td>
<td>0.216</td>
<td>49,511.47</td>
<td>32.35</td>
<td>0.203</td>
</tr>
<tr>
<td>DOA</td>
<td>6,437</td>
<td>15.21</td>
<td>0.184</td>
<td>15,231</td>
<td>22.94</td>
<td>0.146</td>
<td>37,069.05</td>
<td>24.22</td>
<td>0.152</td>
</tr>
<tr>
<td>Ascite/peritonit</td>
<td>5,439</td>
<td>12.85</td>
<td>0.155</td>
<td>8,203</td>
<td>12.35</td>
<td>0.078</td>
<td>17,446.90</td>
<td>11.40</td>
<td>0.071</td>
</tr>
<tr>
<td>Cachexia</td>
<td>4,725</td>
<td>11.16</td>
<td>0.135</td>
<td>2,610</td>
<td>3.93</td>
<td>0.025</td>
<td>6,287.71</td>
<td>4.11</td>
<td>0.025</td>
</tr>
<tr>
<td>CRD</td>
<td>4,591</td>
<td>10.85</td>
<td>0.131</td>
<td>6,799</td>
<td>10.24</td>
<td>0.065</td>
<td>16,254.70</td>
<td>10.62</td>
<td>0.066</td>
</tr>
<tr>
<td>Poisoning</td>
<td>3,481</td>
<td>8.22</td>
<td>0.099</td>
<td>5,335</td>
<td>8.03</td>
<td>0.051</td>
<td>12,774.13</td>
<td>8.34</td>
<td>0.052</td>
</tr>
<tr>
<td>Cellulite</td>
<td>3,343</td>
<td>7.90</td>
<td>0.095</td>
<td>5,004</td>
<td>7.53</td>
<td>0.048</td>
<td>12,033.07</td>
<td>7.86</td>
<td>0.049</td>
</tr>
<tr>
<td>Arthritis/synovitis</td>
<td>397</td>
<td>0.94</td>
<td>0.011</td>
<td>603</td>
<td>0.90</td>
<td>0.005</td>
<td>1,360.13</td>
<td>0.89</td>
<td>0.005</td>
</tr>
<tr>
<td>Contusion/fracture/bruising</td>
<td>87</td>
<td>0.20</td>
<td>0.002</td>
<td>140</td>
<td>0.21</td>
<td>0.001</td>
<td>329.93</td>
<td>0.21</td>
<td>0.001</td>
</tr>
<tr>
<td>Total condemnations</td>
<td>42,310</td>
<td>100</td>
<td>1.202</td>
<td>66,385</td>
<td>100</td>
<td>0.638</td>
<td>153,067</td>
<td>100</td>
<td>0.629</td>
</tr>
</tbody>
</table>

Figure 1.
Seasonal frequency of condemnation causes in the industrial slaughterhouse of Namin.
Causes for the carcass condemnations of the slaughtered poultry

Discussion

Every year, in different parts of the world, extensive research is conducted on the causes of condemnation carcasses, which is very important to identify and determine the distribution of diseases to prevent carcass condemnation and ultimately reduce financial losses [5, 7, 13-14]. Researchers have shown that the proportion of total carcass condemnation to slaughtered birds and the reasons for condemnations differ in countries [4, 6]. This difference is related to ecological conditions, epidemiology of diseases, age and type of slaughtered poultry, and management practice of poultry in every country [4, 6].

According to Bremner [2] studies in England and Wales from 1992 to 1993, 1.3% of all slaughtered broilers were condemned for various causes, and septicaemia/toxemia/fever were the most common causes of condemnation (65.6%). Herenda and Jakel [8] investigated causes for carcass condemnations in Ontario, Canada, between 1991 and 1992. Out of 9,829,296 slaughtered broilers, 100,369 (1.02%) were rejected; ascites and cellulitis were the most frequent reasons for condemned carcasses (0.52%). A survey conducted in Olsztyn, Poland, during 1986-1991 showed that 1.66% was condemned from 37,779,959 slaughtered poultry, and the most common reason for the condemned chicken carcasses was related to Marek’s disease [4]. The research carried out by Petracci et al. (2006) on 1266 million broilers in thirty-three slaughterhouses from 2001 to 2005 in Italy shows that the average percentage of DOA was 0.35 and its rate significantly increased during summer. Mukaratirwa et al. [10] showed that from 1999 to 2005, out of 55,957 ostriches slaughtered in Norton, Zimbabwe, 0.05% of the carcasses were rejected due to septicemia. In another study conducted by Djoma et al. [7] between 2001 and 2005 in Botswana, 3,814 ostriches were referred to the slaughterhouse; during an inspection, 949 organs were rejected for various reasons, and the highest condemnations were due to lungs. Santana et al. [5] studied two slaughterhouses in Goias State, Brazil, from January to April 2007. Of 40,732,773 and 6,457,166 slaughtered poultry in slaughterhouses A and B, 3,384,861 (8.3%) and 235,014 (3.6%) carcasses were rejected, respectively. The most common causes of condemnations in slaughterhouse A, with 51.20% of all condemned carcasses and 4.25% of all slaughter, were observed due to cellulite. In contrast, in slaughterhouse B, fracture and bruising, with 28.90% of all condemnations and 1.04% of all slaughter, were the most common causes of condemnations.

A survey conducted on 404 broiler flocks referred to 15 industrial slaughterhouses in western France during 2008 reported 0.87% of condemned carcasses, and the highest condemnations were related to cachexia 0.30% and hyperemia (0.22%) [16]. In a study accomplished by Haslam et al. [17] in England, the mean percentage of rejection was 1.23%, and the main reason for cause condemnation was reported to be acute internal pathology (0.22%) and Cachexia (0.20%). Allou et al. [18] studied the condemnation rate in the poultry slaughterhouse of Batna City (Algeria), where 8.4% of carcasses were rejected, and the major causes of condemnations were congestion, skin lesions, cachexia. In the report of Mwimali et al. [19], 405,778 (1.88%) birds were condemned from 21,549,233 slaughtered broilers in Kenya, which Asciites and DOA were the most frequent causes of rejection (92.74%).

In 2017, Salines et al. [12] investigated the reasons for the condemnation of broilers at 10 slaughterhouses in France which the most common reason for condemnations was cachexia (41.8%), generalised congestion (29.3%) and non-purulent cutaneous lesions (14.2%). Abdelrahman et al. [13] reported that 49,638 (0.95%) and 16,382 (0.32%) of total slaughtered poultry (5,181,189) in at Damietta poultry abattoir, Damietta governorate, Egypt, were condemned for DOA and condemned broilers, respectively. Cellulitis (11.2%), ascites (10.5%), and septicemia (9.7%) were the most important causes of condemnation, and the annual total economic loss was 2668600.2 EC/P. In another study, 33,54,747 slaughtered broilers were surveyed in England slaughterhouses from 2017–2018, and ascites and abnormal colour were the main reason for condemnations [20]. According to a study by Törmä et al. [21] from approximately 370 million broilers slaughtered in four Finnish slaughterhouses from 2015–2019, the condemnation rate varied between 2.6% and 4.8%, and Cellulitis (0.3–1.0%), ascites (0.3–0.4%), and body cavity disorders (0.2–0.3%) were the most common condemnation causes. A survey by Alfīī et al. [22] in a main slaughterhouse in Denmark from 2020 to 2021 showed that from 17,331,511 slaughtered chickens, 205,879 (1.2%) carcasses were condemned. The main causes of condemnations were due to scratches (23.6%), cellulitis (19.2%), and hepatitis (8.3%).

The studies carried out in Iran have reported that the rate and reasons for condemnations vary in different regions. Research conducted by Ansari-Lari and Rezagholi [6] on eleven industrial slaughterhouses in Fars province from 2002 to 2006 shows that out of the total 130,967,021 slaughtered poultry, 959,416 (0.73%) carcasses were condemned; 62% (595,287) of all condemnations were related to cachexia and septicemia. A study of Jalinia and Movassagh [23] in the industrial slaughterhouse of East Azarbaijan Province in 2011 revealed that from the total of 14,788,995 slaughtered poultry, 55,325 (0.37%) carcasses were
condemned, and the most causes for condemnation was due to cachexia (30.46%). Hosseini Aliabad et al. [9] reported that 380,140 poultry were slaughtered in the Nowshahr slaughterhouse between 2005 and 2006, where 2,548 carcasses (0.67%) were condemned; the DOA was the highest condemned carcasses (0.172%).

In a study conducted by Gholami et al. [15] in 28 slaughterhouses of Tehran province from 2009 to 2011, out of a total of 214,997,429 slaughtered poultry, 705,046 (0.33%) carcasses were rejected; cachexia was the most cause for condemnations (46.57%). Also, they estimated the average annual economic loss due to the condemnations of 14,594,452,200 rials. In the Khodaei-Motlagha et al. [24] study, the most common causes for condemnations of slaughtered broilers in Shanzand slaughterhouse were due to excessive atrophy, trauma, and septicemia during 6 months in 2009. According to reports by Ghaniei et al. [14] at 11 abattoirs in West Azerbaijan province from 2008 to 2015, 171,297,886 poultry were slaughtered, and 1,580,570 (0.92 %) poultry carcasses were condemned for different reasons: septicemia and cachexia were the most common reasons for the condemnation (60.3%) and financial loss due to condemnation was estimated to be as high as 3,731,905 USD.

The present study condemned 42,310 carcasses (1.202%) for various reasons. The 1.202% rate for condemnation in our study is similar to those of Bremner [2], Abdelrahman et al. [13], Haslam et al. [17], and Alfifi et al. [22], who reported 1.30%, 1.27%, 1.23%, and 1.20%, respectively. However, it varied substantially with other studies. The condemnation rate of our study is higher than those reported by Gholami et al. [15] (0.33%), Jalilinia and Movassagh [23] (0.37%), Hosseini Aliabad et al. [9] (0.67%), Ansari-Lari and Rezagholi [6] (0.73%), Ghaniei et al. [14] (0.92%) and Herenda & Jakel [8] (1.02%) and Salines et al. [12] (1.04%). While it is lower than rates reported by Alouei et al. [18] 8.4% in Algeria, Santana et al. [5] 8.3% and 3.6% for two different slaughterhouses in South America, Törmä et al. [21] between 2.6% and 4.8% in Finnish, Radkowski et al. [4] 1.66% in Poland, Junghans et al. [3] 1.48% in Germany and Kittelsen et al. [25] mean 1.4% in Norway.

As shown above, the overall rate of condemnation was different compared with other studies; the reasons for the condemnation were also different. In this survey, all of the condemnations, the most frequent causes of condemned carcasses belonged to septicemia and DOA (20,247 carcasses). So it can be said that the rate of condemnation related to these two factors is very significant compared to other causes, including 47.85% and 0.580% of the condemnations and the total of slaughtered poultry, respectively. The highest financial losses in the present study were observed due to septicemia and DOA; the estimated economic losses related to these two reasons (86,580 USD) are much higher than other causes and constitute 56.52% of the total economic losses.

The highest incidence rate of septicemia was observed in autumn during this study. Septicemia is an almost non-specific term and indicates an infectious disease whose clinical diagnosis is based on carcass congestion, muscle darkening, kidney inflammation, and inflammatory lesions such as airsacculitis and perihepatitis [1]. Various microbial causes cause septicemia, the most important of which are E.coli, influenza, Salmonella enteridis, and Pasteurella multica, important pathogens of human relevance [6]. In this work, bacteriologic examination on septicemic carcasses was not done. However, identifying the microorganisms causing septicemia is highly recommended in future works, which might have important public health implications.

Mortalities due to DOA have welfare and great economic implications in the poultry industry [13]. This study revealed an increased frequency of DOA in summer, similar to the report provided by Salines et al. [12] Incidence of high mortality of DOA in the hot months of the year may reflect the effects of hot stress during the time of broiler harvest and transport and also increased transit times [12]. DOA are carcasses that have perished between the farm and the slaughter or before slaughter. The main reason is the failure to comply with management issues in transporting poultry from farms to the slaughterhouse, which other things can mention for heat stress and humidity in early summer, especially in July, feed and water withdrawal, long transit times, physical injury, environmental condition, high ambient temperature, and overcrowding [13, 18, 25]. This study showed that most reasons for condemnations are due to diseases, accounting for 84.59%. The estimated annual economic losses during this survey were 115,669 USD for diseases and 37,069 USD for DOA. The high rate of condemnations for diseases in colder months was logical.

Conclusion

The meat inspection records in the present survey are a useful tool to help monitor the status of diseases on the flocks and the welfare of birds, which can be used as prevention measures. Therefore, improving disease control programs on flocks and increasing the welfare of birds from flocks to slaughter is necessary. The present results can act as baseline data for the future monitoring of condemnations in poultry slaughterhouses.

Causes for the carcass condemnations of the slaughtered poultry
Materials & Methods

Study Design and Data Collection

This study was carried out using a cross-sectional method from April 2019 to March 2020. Data were obtained with the help of an experienced team of veterinarians. In this survey, DOA and condemned carcasses in the Parkan slaughterhouse of Namin, located in Ardabil province, were investigated. Under the supervision of the responsible veterinarian on the slaughter chain, the total number of slaughtered poultry (broiler, broiler breeder, turkey) and their weight were recorded daily; and in the second stage, after isolating and weighing unusable carcasses, the number of condemnations were recorded and then causes of condemnations were identified based on their morphological characteristics and symptoms, as well as necropsy lesions [6]. Finally, data were collected separately in tables. The prevalence rate was sorted monthly to determine the difference between the distribution of condemned carcasses and the season. The overall rate of condemnations for the one year was also determined. The proportions (%) of condemnations were calculated considering the number and weight of rejected carcasses due to a specific cause against the total number and weight of condemned carcasses and slaughtered poultry.

Inspection of Poultry

Veterinarians carried out routine meat inspection, and condemnation was dependent on the inspector’s experience. In Brief, hygienic carcass inspections were performed in two stages in the abattoir: before slaughter (stage I) and post-slaughter (stage II) [1]. In the first stage of the inspection (before weighing), were taken a sanitary license from the veterinary organization and records of the poultry, including age, average weight, ration type, and diseases involved during the breeding period; then all the poultry were transferred to the slaughter line and inspected before blood sampling. At this stage, acute infectious diseases, cachexia, DOA, general contamination, common infections, and abnormal smells were diagnosed. The post-slaughter inspection was carried out in three stages, in which the surface parts of the body, intestines, and visceral and internal cavities of the body were inspected, and in this process, inedible carcasses were rejected from the cycle of slaughter; after ending the inspection and unloading of intestines and viscera, the inspector on the slaughter chain, the total number of slaughtered poultry (broiler, broiler breeder, turkey) and their weight were recorded.

Assessment of the Financial Loss

The direct economic losses due to condemnation were calculated by this formula:

\[\text{DEL} = \text{NC} \times P \times W \]

The Average sell price of carcasses (p) was calculated based on the prices of slaughtered poultry (Rials/kg) for Ardabil province, which is announced on the website of Iran Poultry Industry Information and Communication Technologies Institute (www.itpnews.com) daily, monthly, and annual. Then, the monthly average sell price of condemned carcasses was estimated in Rial. Later, the calculated Rial was converted into Dollars by checking the reliable currency sell markets such as the Bank Melli Iran (www.bmi.ir) in Tehran province during different months. The average annual sell prices for each kilogram of carcasses were 61,596 Rial or 2.3 USD.

The Average poultry carcass weights (W) were determined by weighting 100 carcasses of different ages. The average weights were calculated as 0.5 kg, 1.6 kg, and 2.3 kg for cachexia, diseases, and DOA in this region, respectively.

The proportions (%) of condemnation economic loss were calculated by these formulas:

\[\text{RCL} = \text{CL} \times \text{TL} \times 100 \]

\[\text{RLS} = \text{CL} \times \text{TL} \times 100 \]

In this study, SPSS software was used for statistical data analysis. Seasonal patterns of variables were investigated with the chi-square (χ²) test. The P-value less than 0.05 is considered statistically significant.

Authors’ Contributions

Aidin Azizpour: Supervision, Planning, Conceptualization, Visualization, Writing- Reviewing and Editing Manuscript. Zahra Amirjam: Supervision, Investigation, Data Analysis, Resources and Validation.

Acknowledgements

The authors would like to thank University of Mohaghegh Ardabili for financial support and everyone who helped us in performing this study.

Conflict of interest

The authors declare that there is no conflict of the interest

References

Causes for the carcass condemnations of the slaughtered poultry

Azizpour et al., IJVST 2024; Vol.16, No.1
DOI: 10.22067/ijvst.2024.82675.1260

Alterations in the Clinical Manifestations of Cutaneous Leishmaniasis in Various Total Antioxidant Capacities: An Animal Study Using BALB/c Mice

Mojtaba Yousefi, Seyed Masoud Zolhavarieh, Alireza Nourian, Hossein Rezvan, Ali Sadeghi-nasab

a Department of Pathobiology, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran.
b Department of Clinical Sciences, Faculty of Veterinary Medicine, Bu-Ali Sina University, Hamedan, Iran.

ABSTRACT

The severity of the clinical manifestations of cutaneous leishmaniasis can vary depending on various factors, such as the Leishmania species involved as well as hosts and their immune response. This study aimed to investigate the relationship between the severity of different clinical signs, histopathological changes, and genetic indicators with TAC in mice experimentally infected with Leishmania major. A total of 105 eight-week-old BALB/c mice of both sexes were assigned to seven experimental groups (15 in each) as follows: 1) healthy mice, 2) Leishmania-infected mice treated with 100 mg/kg/day of SC glucantime until complete healing, 3) mice which received 20 IU/kg/day of vitamin E (SC for 10 days) to increase TAC prior to infection and further treatment with glucantime, 4) Leishmania-infected mice which received both vitamin E and glucantime daily until complete healing, 5) mice which received 20 IU/kg/day of vitamin E (SC for 10 days) before infection, and 6) Leishmania-infected mice which received 20 IU/kg/day of SC vitamin E up to the end of the trial, and 7) mice which received daily vitamin E until the end of the experiment. Wound size, expression of pro-inflammatory cytokines (IFN-γ and TNF-α) and healing genes (KGF and EGF), histopathological findings, and mortality rate were assessed three times on days 31, 38, and 72 post-infection. Approximately, 31 days after the parasite inoculation, dermal lesions were developed in all infected mice. In group 3, the clinical manifestations, healing time, and histopathological changes were significantly more favorable, while group 4 showed the worst situation in terms of the evaluated indicators. A high level of TAC before the onset of the disease has an effective role in the recovery indicators. However, its simultaneous elevation at the beginning of infection will decrease the body’s ability to effectively clear the parasite, heal the tissue, and improve the clinical manifestations of the disease.

Keywords
Antioxidant capacity, Clinical manifestations, Cutaneous leishmaniasis, Leishmania, IFN-γ, TNF-α

Abbreviations
EGF: Epidermal growth factor
OH$: Hydroxyl radical

https://IJVST.um.ac.ir

Corresponding author: Seyed Masoud Zolhavarieh
Email: mzolhavarieh@basu.ac.ir Tel: +98(81)3140-6022
Introduction

Various species of *Leishmania* are obligate intracellular protozoa that replicate within macrophages after being phagocytized by these cells. This parasite has an extracellular promastigote form in its arthropod vector, sandfly, and an intracellular form inside the mammalian macrophages known as amastigote. Upon the sandfly bite, the parasites transfer into the dermis and are subsequently phagocytized by neutrophils, which are immediately called to the site. Within 2 days after the arrival of monocytes/macrophages, as the second wave of inflammatory cells infiltration, the parasites are engulfed mainly by these mononuclear phagocytes, lose their flagella, and differentiate into amastigotes [1, 2].

Macrophages are equipped with microbicidal mechanisms, from which, the intracellular microorganisms must escape to survive [3]. During leishmaniasis, the germicidal processes may occur in two stages. First, during the initial phagocytosis of promastigotes, the macrophage can show a fast oxidative response stimulated by the phagocytic event. Second, once infection with amastigotes is established, the quiescent macrophages can slowly be activated to potentially destroy the intracellular *Leishmania* [4].

Efficient escape from microbicidal molecules produced at each stage of infection is important for *Leishmania* to initiate and maintain the host cell infection. Two important macrophage-derived oxidants are critical in controlling *Leishmania* infection. During the early stage of infection, the free radical superoxide anion (O$_2^-$) is produced as a part of the macrophage respiratory burst in response to the phagocytized cell [5, 6]. Superoxide production is catalyzed by NADPH oxidase, a heme-containing cytochrome that comprises cytosolic and membrane-bound components. After assembly, the oxidase transfers an electron from NADPH to molecular oxygen and produces O$_2^-$. Promastigotes are susceptible to being killed by exposure to O$_2^-$ and hydroxyl radical (OH$^-$) produced from H$_2$O$_2$ [7, 8].

The second anti-leishmanial oxidant produced by macrophages is NO$^+$ [4]. Unlike O$_2^-$, which is generated during parasite phagocytosis, NO$^+$ is produced after macrophage activation by IFN-γ and TNF-α and is closely associated with the intracellular killing of amastigotes [9].

Neutrophils normally have a short lifespan (less than a day) and undergo spontaneous apoptosis. This period may be elongated when these cells are infected with microorganisms [10]. *L. major* can suspend neutrophil apoptosis for up to two days by inducing the secretion of anti-apoptotic cytokines, such as granulocyte-macrophage colony-stimulating factor and IL-8 [11]. It has also been reported that infected neutrophils undergoing apoptosis release more macrophage inflammatory protein 1 beta to attract macrophages to the site of infection and prepare a safe and silent entry to these cells [12]. In other words, the prevention of neutrophil apoptosis is an important mechanism used by *Leishmania* to subvert its death [12, 13]. This silent entry into macrophages is reminiscent of the Trojan Horse scenario [2, 14] as promastigotes suspend the neutrophils’ apoptosis process until macrophages arrive at the site of infection, and also suppress O$_2^-$ and NO$^+$ mediated microbicidal responses [11, 12]. Infected neutrophils are engulfed by macrophages and allow promastigotes to multiply and transform into amastigotes in macrophage phagosomes.

Many studies emphasize the key role of parasite proliferation and host inflammatory responses in leishmaniasis and the impact on the clinical course of the disease [9, 15, 16]. It has been shown that skin wounds and tissue destruction are necessary for effective parasite clearance [3]. Therefore, the clinical manifestations of leishmaniasis, which range from skin lesions to potentially fatal visceral disease [17], are caused by parasite replication and the host’s inflammatory responses [9, 18]. In a clinical study, it was shown that the TAC level in leishmaniasis patients suffering from unhealed chronic wounds is significantly higher than in healed patients [19]. *Leishmania* causes inflammation by stimulating the connective tissue mast cells and the resultant production of reactive oxygen species (ROS) pro-inflammatory mediators. The production of ROS and NO$^+$ during an inflammatory response leads to oxidative damage to cells. On the other hand, similar to the lipophosphoglycan of the promastigote membrane, the intracellular amastigotes disrupt IFN-γ signaling and therefore, significantly inhibit the activity of superoxide dismutase and catalase (CAT) [20]. In other words, during *leishmania* infection, on one hand, free radicals are created during an inflammatory response, and on the other hand, the TAC level decreases simultaneously with the healing of skin wounds and improvement of other clinical manifestations [21]. The present study was conducted to investigate the relationship between the severity of leishmanial lesions with different levels of TAC to better understand the course of the disease and improve the treatment process.

Abbreviations-Cont’d

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1α</td>
<td>Interleukin-1 alpha</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon-gamma</td>
</tr>
<tr>
<td>KGF</td>
<td>Keratinocyte growth factor</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>O$_2^-$</td>
<td>Superoxide</td>
</tr>
<tr>
<td>TAC</td>
<td>Total antioxidant capacity</td>
</tr>
</tbody>
</table>
Results

Leishmaniasis lesions in different groups

On average, after 31 ± 2 days, a Leishmania wound was observed in the parasite inoculation area (Figure 1). In this study, it was observed that the wounds in all groups except for group 2 (LT) became wider until the second sampling time (day 38) and then, their size gradually decreased. The smallest size of the wounds was in group 3 (20.2 mm² ± 23.5), while the largest was in group 2 (p < 0) (Figure 2). Moreover, in the last sampling time, the wounds of group 3 had the highest percentage of healed area (83.9%), and the lowest percentage was observed in group 4 (47.5%) (p < 0) (Figure 3).

TAC measurement

While group 3 (ALT) had the lowest amount of TAC compared to other groups (Figure 4), wound healing in this group showed a significant inverse relationship with the amount of TAC (64.5 mm² ± 45.1) [Pearson correlation (P-value) respectively] (Table 1). Furthermore, in group 5 (AL), it was observed that the total area of the wound had an inverse relationship with the level of [-0.5 (0.001)] [Pearson correlation (P-value) respectively] (Table 1).

RT-PCR results

It was found that IL-1α and IFN-γ genes were not expressed simultaneously in groups infected with Leishmania, and as soon as glucantime was used in them, the concurrent expression of inflammatory genes was observed. In group 3, which showed the smallest size of cutaneous wound and the highest proportion of healed area, the inflammatory genes were expressed without any significant differences between sampling times, and the expression of healing genes...

Figure 1.
Cutaneous wounds caused by the Leishmania major parasite.

Figure 2.
Changes in total wound area in different groups (mm²). Groups 1 and 7 are not included in this diagram, because they had no wounds.

Figure 3.
Changes in the ratio of healed areas to the initial size of the wound in each group (percentage).

Figure 4.
Changes in the TAC levels (μM).

Figure 5.
The occurrence of death in healthy and test groups.

Yousefi et al., IJVST 2024; Vol.16, No.1
DOI:10.22067/ijvst.2023.84439.1301
Table 1. Changes in the expression pattern of the healing and pro-inflammatory genes in relation to changes in the TAC amount and the healed area of the wound

<table>
<thead>
<tr>
<th>Healed</th>
<th>TAC</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
<th>G5</th>
<th>G6</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL or INF</td>
<td>EGF or KGF</td>
<td>IL or INF</td>
<td>EGF or KGF</td>
<td>Group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.2 ± 19.5*</td>
<td>0</td>
<td>1.74 ± 0.34</td>
<td>1.79 ± 0.30</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.3 ± 26.0**</td>
<td>44.2 ± 30.2</td>
<td>1.70 ± 0.31</td>
<td>1.68 ± 0.35</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.647)</td>
<td>(0.195)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72.6 ± 29.7</td>
<td>45.4 ± 38.4</td>
<td>1.52 ± 0.28</td>
<td>1.54 ± 0.17</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.1 ± 31.9</td>
<td>81.5 ± 18.7</td>
<td>1.52 ± 0.21</td>
<td>1.51 ± 0.32</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.000)</td>
<td>(0.001)</td>
<td>(0.987)</td>
<td>(0.569)</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49.4 ± 26.9</td>
<td>31.0 ± 36.4</td>
<td>1.58 ± 0.22</td>
<td>1.38 ± 0.21</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.4 ± 22.1</td>
<td>51.2 ± 7.2</td>
<td>1.81 ± 0.10</td>
<td>1.65 ± 0.19</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.009)</td>
<td>(0.033)</td>
<td>(0.019)</td>
<td>(0.001)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56.5 ± 26.3</td>
<td>100 ± 0.00</td>
<td>1.71 ± 0.32</td>
<td>1.36 ± 0.03</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.0 ± 16.3</td>
<td>38.4 ± 25.9</td>
<td>1.54 ± 0.31</td>
<td>1.71 ± 0.32</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.076)</td>
<td>(0.000)</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51.4 ± 28.3</td>
<td>24.5 ± 35.5</td>
<td>1.90 ± 0.28</td>
<td>1.91 ± 0.20</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.9 ± 0.00</td>
<td>60.0 ± 15.7</td>
<td>1.53 ± 0.00</td>
<td>1.88 ± 0.30</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.000)</td>
<td>(0.006)</td>
<td>(0.000)</td>
<td>(0.664)</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The numbers in the first row: the mean ± standard deviation of the group in which none of the genes are expressed.
The numbers in the second row: the mean ± standard deviation of the group in which at least one of the two genes is expressed. Numbers in parentheses are probability values (P-values). Groups 1 and 7 were not shown in this diagram because they had no wounds.
increased from the second sampling time (results not shown). In addition, in group 6 (LA), which showed the highest levels of TAC, although the expression of the KGF gene increased at the last sampling, the expression of pro-inflammatory genes was very low. Meanwhile, our results showed that the rise in the ratio of healed area to the total wound area was greatly related to the expression of pro-inflammatory genes rather than to the expression of healing genes (Table 2).

Mortality rate

Although the death that occurred in some groups was not statistically significant, there was no death in groups 3 and 5, and the deterioration of the lesions in these groups was less than in others (clinical observation) (Figure 5).

Histopathologic findings

Histopathological examination of the skin and spleen tissue samples showed the most promising results in group 3 (ALT) and the least in group 6 (LA). Although treated with glucantime, group 4 indicated impaired microscopic architecture in the spleen tissue (Figures 6 and 7). The absence of granulomatous lesions in all groups was a remarkable finding in this study.

Discussion

Considering the destructive effects of the oxidant systems and the interaction of these microbialic mechanisms with the proliferation of the *Leishmania* parasite, this study aimed to evaluate the outcomes of *L. major* infection in association with different levels of TAC. Therefore, the most important criterion of this investigation was the clinical presentation of the disease. In all experimental groups, the wound size increased first, and then, gradually decreased. This phenomenon did not occur in group 2, and its reason has not yet been determined by the authors.

Leishmania down-regulates the pro-inflammatory genes [16, 19, 20], but once treatment with glucantime is started, the expression of main pro-inflammatory genes (IL-1α and IFN-γ), as important and influential factors in the immune response against *Leishmania*, is resumed [19]. Contrary to what was expected in group 4 (LTA), the expression of pro-inflammatory genes was not resumed, which might have been due to the use of glucantime. It was observed that in this group, the expression of pro-inflammatory (*p* = 0.019) and healing (*p* = 0.001) genes declined. In other words, raising the TAC level together with treatment with glucantime may delay the immune system to reach the threshold for the production of essential pro-inflammatory cytokines, such as IL-1α and IFN-γ [11, 21]. Therefore, it seems that parasite survival is facilitated by increasing exogenous TAC levels in the host.

Interleukin-1α and IFN-γ, as "warning cytokines", are the main pro-inflammatory cytokines secreted by macrophages. It has been reported that IL-1α induces the expression of adhesion molecules on the surface of endothelial cells and leukocytes, and initiates and propagates the host’s inflammatory response [17, 23]. Several studies have emphasized the crucial role of IL-1α in the control of inflammatory and immune responses in leishmaniasis for changing the clinical course of this disease. This function is conferred by T-helper cell type-1 lymphocytes, which limit the

<table>
<thead>
<tr>
<th>Group</th>
<th>Healed Percent</th>
<th>Total Wound Area</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.7 ± 0.3*</td>
<td>1.7 ± 0.3§</td>
</tr>
<tr>
<td>G2</td>
<td>44.2 ± 30.2**</td>
<td>48.7 ± 0.3§§</td>
</tr>
<tr>
<td></td>
<td>[0.261 (0.142)]***</td>
<td>[-0.322 (0.067)] §§§</td>
</tr>
<tr>
<td></td>
<td>1.6 ± 0.3</td>
<td>1.6 ± 0.3</td>
</tr>
<tr>
<td>G3</td>
<td>62.1 ± 35.5</td>
<td>28.0 ± 27.2</td>
</tr>
<tr>
<td></td>
<td>[-0.401 (0.011)]</td>
<td>[-0.231 (0.157)]</td>
</tr>
<tr>
<td></td>
<td>1.6 ± 0.1</td>
<td>1.6 ± 0.1</td>
</tr>
<tr>
<td>G4</td>
<td>41.1 ± 27.8</td>
<td>46.1 ± 34.9</td>
</tr>
<tr>
<td></td>
<td>[-0.112 (0.516)]</td>
<td>[-0.076 (0.659)]</td>
</tr>
<tr>
<td></td>
<td>1.7 ± 0.3</td>
<td>1.7 ± 0.3</td>
</tr>
<tr>
<td>G5</td>
<td>42.8 ± 29.6</td>
<td>59.1 ± 60.8</td>
</tr>
<tr>
<td></td>
<td>[-0.004 (0.98)]</td>
<td>[-0.5 (0.001)]</td>
</tr>
<tr>
<td></td>
<td>1.9 ± 0.2</td>
<td>1.9 ± 0.2</td>
</tr>
<tr>
<td>G6</td>
<td>49.9 ± 27.9</td>
<td>43.5 ± 37.2</td>
</tr>
<tr>
<td></td>
<td>[-0.03 (0.849)]</td>
<td>[-0.266 (0.088)]</td>
</tr>
</tbody>
</table>

* Mean ± standard deviation of TAC
** Mean ± standard deviation of the total wound area
§Mean ± standard deviation of TAC
§§ Mean ± standard deviation of the percentage of the healed part of the wound
***The Pearson correlation coefficient and the numbers in the parentheses are the P-value.

Groups 1 and 7 were not shown in this diagram because they had no wounds.

Table 2.
Changes in the total wound area and its healed part in relation to the TAC
spread of the parasite and lead to wound healing [17, 22, 23]. It seems that wound healing cannot be coordinated as long as the number of neutrophils in the wound exceeds the number of lymphocytes and macrophages. Therefore, the prolongation of the acute inflammatory phase and the delay in the replacement of acute inflammatory cells (granulocytes) by chronic cells (mononuclear) in this group can be due to the lack of (or very low) expression of IL-1α and IFN-γ genes [24]. In the third group, the presence of an inverse statistical relationship between TAC levels and wound healing ($p = 0.011$) strongly supports the fact that rising TAC levels in leishmaniasis worsen the clinical manifestations of the disease [25].

Granuloma formation is another feature of tissue pathology in wound healing as well as fibrous transformation due to excessive collagen deposition and resultant scar tissue. Not only granulomas can keep microorganisms alive, but also they prevent the spread of infection. The granulomatous reaction occurs in response to infection by some *Leishmania spp.* as fibroblasts migrate into the area and change the normal tissue structure. However, in the histopathological examination of the spleen and skin samples, no organized amastigotes containing granulomatous lesions were detected in any of the groups. According to other studies, the absence of granuloma formation is associated with the dissemination of cutaneous leishmaniasis. In other words, the severity of the disease depends on the ability of the host to develop a granulomatous reaction [24]. In the present study, there were no signs of disease spread and visceralization, and it is difficult to assess whether the non-spreading behaviour of the disease is the cause or the result of IL-1α and IFN-γ genes expression. Because the expression of other inflammatory genes was not investigated in this study, further evaluations and tracking of more pro-inflammatory cytokines might be helpful.

In groups 3 and 5, the mortality rate was zero (Figure 5). This result can probably be related to the protective role of vitamin E against the occurrence of some co-existing infections that otherwise may lead to the deterioration of the patient’s condition and death. When administered systemically, vitamin E has been shown to increase the resistance of wounds to infections. However, no effects other than inhibiting collagen synthesis have been found for this vitamin when administered topically [26, 27].

Figure 7.
Histopathological changes in the spleen, G1: Normal microscopic structure of the spleen with normal white (WP) and red (RP) pulps, G3: The structure of the organ is observed normally, G4: Disruption of the normal structure of the organ, reduction in the size of white pulp and severe necrosis in white and red pulps, G6: Severe necrosis (arrowhead) in white and red pulps.
Conclusion

In cutaneous leishmaniasis, a delicate balance between tissue pathology and infection control determines the clinical presentation of the disease. T-cells are the main infiltrating lymphocytes in the skin lesions of leishmaniasis to control the parasite proliferation as well as tissue destruction. Upon the inoculation of mice with \textit{L. major}, the epidermis is damaged as a result of tissue destruction by neutrophils, macrophage necrosis, and keratinocyte apoptosis mediated by FasL/TRAIL \cite{3}. Consequently, in the treatment of cutaneous leishmaniasis, it is necessary to control both parasite proliferation and tissue damage \cite{3, 9, 16-18}. It was concluded from the results of this study that in the BALB/c mouse model, by increasing TAC levels before infection with \textit{L. major}, the severity of the clinical manifestations of the disease will be reduced.

Materials & Methods

This study was approved by the Medical Ethics Committee of Bu-Ali Sina University, Iran (protocol number: 8-13/02/1399) based on international protocols for working with laboratory animals. A total of 105 BALB/c mice of both sexes at the age of 8 weeks old were randomly allocated into seven groups (n=15 in each group) as follows: 1) healthy mice (N), 2) \textit{Leishmania}-infected mice treated with 100 mg/kg/day of SC glucantime (Sanofi Aventis, France) until complete healing (LT), 3) mice which received 20 IU/kg/day of SC vitamin E (Aburaihan, Iran) for 10 days to increase TAC prior to infection and further treatment with glucantime (S), 4) \textit{Leishmania}-infected mice which received both vitamin E and glucantime daily until complete healing (LAT), 5) mice which received 20 IU/kg/day of vitamin E (SC) until the end of the experiment, and 7) mice which received daily vitamin E until the end of the experiment to increase TAC levels (A).

An inoculate of 10⁵ \textit{L. major} promastigotes MHOM/76/ER was injected intradermally (tail base) in each mouse \cite{17}. The animals were housed in polycarbonate cages under standard conditions of cycles of 12 hours of light-dark and at a temperature of 25°C±1°C. Animals were fed ad libitum with a balanced diet and tap water. Mortality was checked daily.

Wounds were photographed by placing a one-centimeter marker next to the lesion. The lesion size was calculated using ImageJ with Java 1.8.0_172 after the calibration of photographs. At the first appearance of the ulcerative lesion (31 ± 2 days), 7 days later (day 38), and at the time of recovery, five mice from each group were euthanized and sampled (blood, skin, and spleen). Blood samples were collected immediately after euthanizing with chloroform, and skin and spleen tissue samples were surgically harvested. The tissue samples were cut in half for molecular and histopathological analyses.

All the collected blood and half of tissue samples (skin and spleen) were stored at -80°C for further molecular analysis of healing (KGF and EGF) and pro-inflammatory (IL-1α and IFN-γ) genes (Table 3). The remaining half of the skin and spleen tissue samples were placed immediately in 10% neutral buffered formalin and processed to obtain hematoxylin and eosin-stained tissue sections. The sections were then examined independently by a veterinary pathologist using a light microscope equipped with a digital camera (Olympus DP25, Germany).

Measurement of TAC

In this study, the TAC level in the sera was measured using a commercial enzyme-linked immunosorbent assay kit (Kiazist, Iran) according to the ferric-reducing antioxidant power method.

Statistical analysis

After testing the normality and homogeneity of variances at the level of groups and different stages of the experiment, repeated measures analysis of variance and Tukey’s test as a follow-up test were performed by the SPSS statistical software (version 19). The significance level was considered less than 0.05.

Table 3.
The nucleotide sequence of PCR primers.

<table>
<thead>
<tr>
<th>NO.</th>
<th>Genes</th>
<th>Sequence</th>
<th>Annealing temperature</th>
<th>Product size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>β-actin</td>
<td>Forward: 5/ ATGGTGGGTATGCTGAGAAGG 3/</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse: 5/ TGGCTGAGGTTGAAGGTC 3/</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>IL-1α</td>
<td>Forward: 5/ TGTGATTAATGCACGTCAACA 3/</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse: 5/ GAGCAGTCAGAAGAGTGT 3/</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>IFN-γ</td>
<td>Forward: 5/ GCCTGAGACAATGACAGCT 3/</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse: 5/ AAGAGATAATCGGCCGTGC 3/</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>KGF</td>
<td>Forward: 5/ GCAACCGCTACGAGTGA 3/</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse: 5/ CACATGATTAGCTGTGTCTTCA 3/</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>EGF</td>
<td>Forward: 5/ GCTCCCTGCCGCTTTATCAGG 3/</td>
<td>232,984</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse: 5/ GTGTCTCTAGCAGGCTGCTCT 3/</td>
<td>58</td>
<td></td>
</tr>
</tbody>
</table>
References

Cutaneous leishmaniasis and total antioxidant capacity in BALB/c mice

URL: https://ijvst.um.ac.ir/article_44564.html
ABSTRACT

HS is still a frequently reported endemic disease, with outbreaks in Indonesia. HS vaccines distributed in Indonesia exhibit various limitations. This study computationally evaluated the B-cell epitope of the 37-kDa OmpH derived from the amino acid sequence of Pasteurella multocida from the NTT and Katha strains and compared the epitopes of the two strains. Amino acid sequences were obtained from NCBI and analyzed for multiple sequence alignment, and homology was analyzed using the BLASTp program at NCBI. Epitope prediction was performed using the IEDB B-cell epitope and ABCPred prediction tools. The Vaxijen v.2 online platform was used for antigenicity analysis, and IEDB was used for epitope conservancy analysis. The results of the homology analysis revealed that local NTT isolates had a high (>95%) identity with the Katha strain and isolates from China, India, Iran, Japan, and the USA. The epitope predictions from both methods were cross-checked, overlapping epitopes were shortlisted, and only five epitopes were predicted. Among the five, one epitope, ALEVGLN, appeared to be antigenic to both NTT and Katha strains. The antigenic sequence of 37 kDa OmpH can be used for peptide-based vaccine development and immunotherapeutic design.

Keywords

Haemorrhagic Septicemia, P. multocida, Outer membrane protein H (OmpH), Epitope, Antigenicity

Abbreviations

HS: Haemorrhagic Septicemia
OmpH: Outer membrane protein H
kDa: Kilo Dalton
NCBI: National Center for Biotechnology Information
NTT: Nusa Tenggara Timur
IEDB: Immune Epitope Database
WOAH: World Organization for Animal Health

Firdausy Kurnia Maulana , Didik Handijatno

a Airlangga Disease Prevention and Research Center, Universitas Airlangga, Indonesia.
b Laboratory of Bacteriology and Mycology, Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Indonesia.
Introduction

HS, also known as snoring disease in Indonesia, is caused by Pasteurella multocida, a gram-negative bacterium that commonly infects cattle and buffalo [1].

HS has a wide distribution, especially in tropical regions, such as Middle-East, Central Africa, North-East Africa, South Africa, South Asia, and South-East Asia [2]. In Indonesia, 12,058 cases of HS were reported between July 2007 and December 2019, with cases in buffaloes (4,047), cattle (5,809), pigs (2,108), goats/sheep (64), and Equidae (30) [3].

The disease causes huge losses due to livestock mortality, as well as losses in the meat- and dairy-related industries [4]. The economic loss of the livestock industry is estimated at 792 million USD per year [5], and the mortality rate of HS is up to 100% [6]. Considering its socioeconomic impact, HS is classified as one of 22 strategic infectious diseases in Indonesia, where control measures are coordinated at the central level [7].

The disease remains endemic in Indonesia, and several regions continue to report outbreaks [8, 9, 10] despite vaccination efforts. Currently, the disease is present in multiple areas of Indonesia, including Bali, Bengkulu, DKI Jakarta, Java, Aceh, West Nusa Tenggara, East Nusa Tenggara, North Sumatra, South Kalimantan, South Sumatra, Jambi, Riau, Central Sulawesi, West Sumatra, East Kalimantan, and Central Kalimantan [3].

The HS vaccines in Indonesia are administered once annually in the form of either an oil adjuvants vaccine or an aluminum precipitate vaccine, both of which are developed using the Katha strain from Burma [7]. The most effective option in the market is the oil adjuvant vaccine, which can provide immunity for up to one year. However, this vaccine has limitations, including the high viscosity of the solution, which makes injection challenging and can lead to swelling and abscesses at the injection site [2, 11]. Furthermore, this type of vaccine has a short storage time because it is susceptible to damage caused by temperature fluctuations [12].

The OmpH is a prominent protein in the purified envelope of P. multocida envelope and was identified as an immunodominant porin. Ongoing research has explored the feasibility of utilizing OmpH as a subunit vaccine in both native and recombinant forms to combat avian cholera, bovine respiratory illness, and HS [4, 13-16]. Vaccination with the recombinant form of OmpH, which has a molecular weight of 37 kDa, can induce both antibody- and cell-mediated immune responses in dairy calves and swamp buffaloes, protecting HS [4, 17]. Research conducted by Maulana et al. (2018) demonstrated that 37-kDa OmpH from a local strain of P. multocida isolated from NTT and Katha strains exhibit similar B-cell epitopes [18].

Immunoinformatics is a valuable technique for identifying new antigenic epitopes that can be used to design new vaccines against a variety of infectious diseases, including peptide-based vaccines. Given the advancement of immunoinformatics technologies, more accurate prediction of B-cell epitopes can now be made. Compared to strict laboratory studies, employing immunoinformatics methods to anticipate epitopes and develop peptide-based vaccines minimizes costs and saves time, whilst also elevating precision [19, 20].

This study was conducted to computationally evaluate the B-cell epitope of the 37-kDa OmpH derived from the amino acid sequence of P. multocida from NTT and Katha strains, and compare the epitopes of the two strains. The results can be used for further evaluation in the development of a peptide-based vaccine candidate.

Results

Multiple Sequence Alignment and Homology Analysis

Conserved and varied regions of the 37 kDa OmpH from NTT and other sources were evaluated through homology analysis and multiple sequence alignment as depicted in Figure 1. Specifically, Clustal W was employed to assess seven different sequences of the OmpH gene from NTT-Indonesia, China, Japan, India, Iran, the USA, and Katha strains. Most of the alterations were point mutations, whereas there were identified insertions at positions 66-71, and deletions at positions 60-61, 189, and 196-197. The Entropy (Hx) Plot in Figure 2 indicates high entropy, revealing a significant variation between each sequence. The highest entropy values of 0.95570 were recorded at positions 6. The homology analysis results showed that the 37 kDa OmpH asam amino sequence in local NTT isolates was significantly similar (>95%) to the Katha strain and isolates from China, India, Iran, Japan, and the USA (Table 1).

Prediction of the B-Cell Epitope of the OmpH P. multocida isolates of NTT and Vaccines

Kolaskar and Tangoankar method was employed to predict both the NTT isolates and Katha strain, possessing 11 potential B-cell epitopes within the 37 kDa OmpH gene that met the specified threshold value. In addition, the ABCpred prediction server was utilized in this study for predicting linear B-cell epitope regions in an antigen sequence through an artificial neural network. The results of both methods
Computational Evaluation of B Cell Epitope of 37 kDa Outer Membrane Protein H (OmpH) Pasteurella multocida

Maulana et al., IJVST 2024; Vol.16, No.1
DOI:10.22067/ijvst.2024.81545.1237

were cross-checked, and overlapped epitopes were shortlisted. Next, only five epitopes were ultimately selected and listed in Tables 2 and 3.
Antigenicity Analysis

Antigenicity analysis was conducted using the Vaxijen test with a threshold value of 0.5 (tables 4 and 5). Out of the five epitopes, one appeared to be antigenic in both NTT and Katha strains with the same peptide sequence ALEVGLN and a score of 1.3471.

Conservancy Analysis

Conservation analysis was performed on 100 sequences retrieved from the NCBI database via the BLASTp tool against the NTT isolate. Only ALEVGLN was deemed as a possible antigen when it came to antigenicity, while both GFVVAGL and ALEVGLN showed relatively high conservation levels (93%) (Table 6).

Table 2
Potential shortlisted BCL epitopes of OmpH *P. multocida* NTT isolate using Kolaskar and Tongaonkar antigenicity method and ABCpred method

<table>
<thead>
<tr>
<th>Kolaskar and Tongaonkar Antigenicity Method</th>
<th>Amino Acid Position</th>
<th>ABCpred Method</th>
<th>Start Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVGVSĐTYYFLG</td>
<td>100-111</td>
<td>DVGVSĐTYYFLGGINN</td>
<td>98</td>
</tr>
<tr>
<td>GAYVFSA</td>
<td>136-142</td>
<td>GFTFGGAYVFSADADK</td>
<td>131</td>
</tr>
<tr>
<td>GFVVAGL</td>
<td>154-160</td>
<td>RGFVVAGLYNRKMGDV</td>
<td>153</td>
</tr>
<tr>
<td>SQKYVTVTA</td>
<td>177-184</td>
<td>AGYSQKYVTVAKQEKE</td>
<td>174</td>
</tr>
<tr>
<td>ALEVGLN</td>
<td>223-229</td>
<td>ALEVGLNYDINDKAKV</td>
<td>223</td>
</tr>
</tbody>
</table>

Table 3
Potential shortlisted BCL epitopes of OmpH *P. multocida* Katha strain using Kolaskar and Tongaonkar antigenicity method and ABCpred method

<table>
<thead>
<tr>
<th>Kolaskar and Tongaonkar Antigenicity Method</th>
<th>Amino Acid Position</th>
<th>ABCpred Method</th>
<th>Start Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVGVSĐTYYFLG</td>
<td>100-111</td>
<td>DVGVSĐTYYFLGGINN</td>
<td>100</td>
</tr>
<tr>
<td>GAYVFSA</td>
<td>138-144</td>
<td>GFTFGGAYVFSADADK</td>
<td>133</td>
</tr>
<tr>
<td>GFVVAGL</td>
<td>156-162</td>
<td>RGFVVAGLYNRKMGDV</td>
<td>155</td>
</tr>
<tr>
<td>SQKYVTVTA</td>
<td>179-185</td>
<td>AGYSQKYVTVAKQEKE</td>
<td>179</td>
</tr>
<tr>
<td>ALEVGLN</td>
<td>223-229</td>
<td>ALEVGLNYDINDKAKV</td>
<td>223</td>
</tr>
</tbody>
</table>

Table 4
Prediction of B-cell epitope antigenicity from outer membrane protein H (OmpH) amino acid sequences of *P. multocida* local isolates NTT

<table>
<thead>
<tr>
<th>Sequences</th>
<th>Score*</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVGVSĐTYYFLG</td>
<td>0.2146</td>
<td>Probable Non-Antigen</td>
</tr>
<tr>
<td>GAYVFSA</td>
<td>-0.1360</td>
<td>Probable Non-Antigen</td>
</tr>
<tr>
<td>GFVVAGL</td>
<td>-0.1978</td>
<td>Probable Non-Antigen</td>
</tr>
<tr>
<td>SQKYVTVTA</td>
<td>0.2844</td>
<td>Probable Non-Antigen</td>
</tr>
<tr>
<td>ALEVGLN</td>
<td>1.3471</td>
<td>Probable ANTIGEN</td>
</tr>
</tbody>
</table>

*threshold score 0.5

Table 5
Prediction of B-cell epitope antigenicity from outer membrane protein H (OmpH) amino acid sequences of Katha vaccine strain

<table>
<thead>
<tr>
<th>Sequences</th>
<th>Score*</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVGVSĐTYYFLG</td>
<td>0.2146</td>
<td>Probable Non-Antigen</td>
</tr>
<tr>
<td>GAYVFSA</td>
<td>-0.1360</td>
<td>Probable Non-Antigen</td>
</tr>
<tr>
<td>GFVVAGL</td>
<td>-0.1978</td>
<td>Probable Non-Antigen</td>
</tr>
<tr>
<td>SQKYVTVTA</td>
<td>0.2844</td>
<td>Probable Non-Antigen</td>
</tr>
<tr>
<td>ALEVGLN</td>
<td>1.3471</td>
<td>Probable ANTIGEN</td>
</tr>
</tbody>
</table>

*threshold score 0.5

Table 6
Conservation analysis of selected peptides from *P. multocida* NTT isolate and Katha strain through the IEDB epitope conservancy analysis website

<table>
<thead>
<tr>
<th>Peptide Sequence</th>
<th>%Protein Sequence Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVGVSĐTYYFLG</td>
<td>84.00% (84/100)</td>
</tr>
<tr>
<td>GAYVFSA</td>
<td>74.00% (74/100)</td>
</tr>
<tr>
<td>GFVVAGL</td>
<td>93.00% (93/100)</td>
</tr>
<tr>
<td>SQKYVTVTA</td>
<td>28.00% (28/100)</td>
</tr>
<tr>
<td>ALEVGLN</td>
<td>93.00% (93/100)</td>
</tr>
</tbody>
</table>
Discussion

The OmpH is an antigenic surface protein in the envelope of *P. multocida*. It has been identified in all bovine isolates and is being considered a vaccine candidate by some researchers [2]. Conserved and varied regions of the 37 kDa OmpH protein from NTT and other sources were assessed through multiple sequence alignment. The entropy (Hx) plot graphs were utilized to illustrate the variations between sequences. The entropy values had a range of 0-1. The more varied a sequence, the higher the entropy value. The positions with the highest entropy were 61 and 299. Sequences resulting in high entropy alignment are unlikely to make good vaccine candidates. An entropy value of 0 was observed in regions 1-7, 14-27, 29-59, 78-188 191-195, 198-235, 240-248, 254-265, and 267-298. In the low-entropy alignment, it is crucial to consider regions that correspond to very low entropy when designing peptide vaccines. This highly conserved region across antigens results in the formation of antibodies by the peptide, which protects against pathogens of different serotypes. Furthermore, this region demonstrates several critical functions due to its high level of conservation, making it resistant to mutation under positive selection pressure. In addition, the binding of antibodies to this region deactivates essential functions [21]. The 37 kDa amino acid sequence of OmpH local isolates in NTT showed high identity (>95%) with the Katha strain and isolates from China, India, Iran, Japan, and the USA, suggesting that the nucleotide sequences of NTT, vaccines, and other reference isolates may share a common ancestor [22].

A B-cell epitope refers to a defined region on the surface of an antigen that binds to an antibody. There are two categories of epitopes, comprising continuous (linear or sequential) and discontinuous (non-linear or conformational) epitopes [23]. Linear B-cell epitopes are made up of peptides that can be readily used in immunization and antibody production as substitutes for antigens [24]. The Kolaskar and Tongaonkar methods revealed that both the NTT isolates and Katha strain possess 11 potential B-cell epitopes in the 37 kDa OmpH gene that surpass the specified threshold value in this study. The Kolaskar and Tongaonkar antigenicity techniques evaluate the antigenicity dependent on the physiochemical properties of amino acids as well as the number of experimentally confirmed epitopes [25].

Another prediction method for B-cell epitopes utilized in this study was the ABCpred prediction server. This server implements an artificial neural network to predict the linear regions of B-cell epitopes in an antigen sequence. The methodology for this server is developed on a recurrent neural network (machine-based technique), which relies on fixed-length patterns. The accuracy of this prediction method is 65.93%.

ABCpred was utilized to identify potential B-cell epitopes from 37 kDa OmpH *P. multocida* NTT isolate and Katha strain. The results from both methods were cross-checked, narrowed down, shortlisted to overlapping epitopes, and only five were selected. The combination of both methods can enhance the results of the prediction accuracy of B-cell epitope [26].

The peptides in the epitope prediction were chosen using the Kolaskar and Tongaonkar antigenicity methods and subsequently verified with the ABCpred method. They were then tested for antigenicity using the VaxiJen test, with a minimum threshold value of 0.5. VaxiJen is a pioneering server for the alignment-independent prediction of protective antigens [27]. Out of the five epitopes, one appeared to be antigenic in both NTT and Katha strains with the same peptide sequence ALEVGLN, scoring 1.3471. The high antigenicity value of this peptide sequence indicates its potential as an ideal vaccine candidate. A higher antigenicity value translates to a greater ability to induce the production of specific antibodies by B-cells [28].

The 37 kDa OmpH peptides with fairly high conservation (93%) comprise GFVVAGL and ALEVGLN, although only ALEVGLN is considered a probable antigen. In a study conducted by Bui et al. [29], conservation refers to the part of a protein sequence that contains an epitope that is considered to be at or above a certain level of identity. Regions with lower variability in the parts of the protein sequence that contain epitopes indicate greater epitope uniqueness. This indicates the degree of variability or uniqueness of the epitope. Therefore, these regions often serve as good targets for the development of epitope-based vaccines since the targeted epitopes are present in various strains of specific pathogens.

Conclusion

According to the findings of our bioinformatics studies, there was only one epitope of 37 kDa OmpH *P. multocida* both from NTT isolate and Katha strain that met the selected criteria of antigenicity and conservancy analysis. The epitope “ALEVGLN” is hypothesized to be the most potential candidate for a seed epitope/peptide vaccine within the 37 kDa OmpH. Further studies are needed to investigate the conserved regions of OmpH and assess their efficacy as vaccines against *P. multocida* infection.
Materials & Methods

Data Retrieval
The amino acid sequences of the 37 kDa OmpH P. multocida isolate retrieved from NCBI with accession numbers QDC35621 and QDF60493, as well as other reference isolates with accession numbers ABR24803.1, ABX58059.1, AAC02237.1, AQM74565.1, and ABD94067.1 were analyzed [31].

Multiple Sequence Alignment
Amino acid sequences obtained from NCBI were analyzed for multiple sequence alignment by employing the CrustalW method in the BioEdit program. Amino acid sequences of seven different strains were included in this analysis to identify the conserved regions of 37 kDa OmpH [32].

Homology Analysis
Homology analysis was performed using the BLASTp program at NCBI [22]. Specifically, the amino acid sequence of the 37 kDa OmpH of the NTT isolate was compared to the Katha strain and five other isolates from different countries retrieved from GenBank, NCBI.

Epitope Prediction
Epitope prediction was performed using the IEDB B-Cell epitope prediction tool (http://tools.iedb.org/bcell/) with default thresholds. The Kolaskar and Tongaonkar antigenicity method was employed, which can predict antigenic determinants with approximately 75% accuracy. Moreover, ABCpred (http://crdd.osdd.net/raghava/apcpred/) was utilized, which can achieve an accuracy of up to 65.93% using recurrent neural networks with a 0.5 threshold [24]. Predicted peptides were acquired and analyzed further for their antigenicity using the Vaxijen v 2.0 tools [27].

Antigenicity Analysis
The antigenicity analysis was completed using Vaxijen v2 online platform (http://www.ddg-pharmfac.net/vaxijen/Vaxijen.html). The target proteins in Vaxijen v2.0 were predicted using the auto-cross covariance method with a threshold of 0.5 [30].

Conservancy Analysis
The epitope conservancy analysis tool used in this study was epitope conservancy analysis (http://tools.iedb.org/conservancy/) at the IEDB (Immune Epitope Database) webserver with sequence identity threshold set at 100%. Selected peptide sequences from the previous step were assessed for their conservation among 100 homologous sequences of P. multocida retrieved from the NCBI database where BLASTp was performed against the NTT isolate [29].

Authors’ Contributions
F.K.M and D.H conceived and planned the experiments. F.K.M carried out the experiments. F.K.M and D.H contributed to the interpretation of the results. F.K.M took the lead in writing the manuscript. All authors provided critical feedback and helped shape the research, analysis and manuscript.

Acknowledgements
We would like to thank the Balai Besar Veteriner Denpasar, Department of Microbiology and Mycology and Bacteriology and Mycology Laboratory of Veterinary Medicine Faculty of Airlangga University for the permission and support of the research.

Conflict of interest
The authors declare that there is no conflict of interest.

References

Computational Evaluation of B Cell Epitope of 37 kDa Outer Membrane Protein H (OmpH) Pasteurella multocida
RESEARCH ARTICLE

IRANIAN JOURNAL OF VETERINARY SCIENCE AND TECHNOLOGY

Computational Evaluation of B Cell Epitope of 37 kDa Outer Membrane Protein H (OmpH) Pasteurella multocida

Maulana et al., IJVST 2024; Vol. 16, No. 1
DOI: 10.22067/ijvst.2024.81545.1237

COPYRIGHTS
©2024 The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.

How to cite this article
DOI: https://doi.org/10.22067/ijvst.2024.81545.1237
URL: https://ijvst.um.ac.ir/article_44759.html

32. Nouri MAA, Almofti YA, Abd-elrahman KA, & Eltilib EEM. 2019. Identification of Novel Multi Epitopes Vaccine against the Capsid Protein (ORF2) of Hepatitis E Virus. American Journal of Infectious Diseases and Microbiology. 7(1): 26-42. DOI: 10.12691/ajidm-7-1-5.
RESEARCH ARTICLE

Recombinant Expression of Bornavirus P24 Protein for Enzyme-Linked Immunosorbent Assay Development

Seyedeh Narjes Sadat, Sahar Khalvand, Behzad Ramezani, Mahdi Habibi-Anbouhi, Fatemeh Kazemi-Lomedasht, Hajarsadat Ghaderi, Mahdi Behdani

a Biotechnology Research Center, Venom & Biotherapeutics Molecules Lab, Pasteur Institute of Iran, Tehran, Iran.
b Kawsar Biotechnology Company, Tehran, Iran.
c National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
d Zoonoses Research Center, Pasteur Institute of Iran, Amol, Iran.

ABSTRACT

BDV is a neurotropic enveloped RNA virus that induces persistent neurologic disease in a wide host range, including several vertebrate species and humans. The BDV genome encodes six proteins but the P24 protein was identified at higher rates than other proteins in BDV-infected tissues. In this study, BDV-P24 protein was constructed and subcloned into expression plasmid pET22. Recombinant protein expression was confirmed by SDS-PAGE and western blotting. P24 protein was injected into rabbits with the aim of polyclonal antibody production and immunization. ELISA is a fast, cost-effective, and highly sensitive technique with a lower probability of contamination compared to other diagnostic methods. ELISA was performed to evaluate infection in laboratory rabbits and retrospective infection was examined in 50 rabbits. The obtained results in this study indicated that ELISA based on P24 protein has a high potential to detect BDV infection.

Keywords

Bornavirus; ELISA; Polyclonal antibody; Borna-P24 protein; Diagnostic method

Abbreviations

BDV: Bornavirus
RNA: Ribonucleic acid
N: Nucleoprotein
P: Phosphoprotein
M: Matrix protein
G: Glycoprotein

Number of Figures: 3
Number of Tables: 0
Number of References: 36
Number of Pages: 6

DOI: 10.22067/ijvst.2024.84563.1304
Introduction

According to the definition of the World Health Organization, any infectious disease common between vertebrate animals and humans is classified as a zoonosis [1]. Zoonosis currently accounts for approximately 70% of emerging diseases [2] and causes 2.7 million human deaths worldwide annually [3]. The zoonotic pathogens are highly important due to the following reasons; the pathogen itself is compatible with other human hosts and is capable of causing resistant human-to-human infection without requiring to seed from the animal reservoir [4]. Early detection of the pathogens common between humans and animals through increasing laboratory capacity is a vital step toward the control and prevention of zoonosis [5, 6].

BDV is a highly neurotropic agent in mammalian species, such as horses, sheep, rabbits, rats, mice, guinea pigs, dogs, and cattle [7, 8]. More than 20 various genotypes from the Borna virus were extracted from different hosts, including humans, which creates a potential danger of sharing these viruses between humans and animals [9]. Selective tropism was exhibited by BDV in the nerve cells of the limbic system, especially the cortex and hippocampus, two primitive structures that control many behavioral and cognitive functions [10]. Clinical symptoms entail unusual behavior, sensorial changes, or miss of movement performance. In advanced steps, somnolence, lethargy, stupor, ataxia, and paralysis are observed. Death usually happens four weeks after the initial clinical symptoms [11]. Numerous neuropsychiatric entities have been indicated to be related to the potential markers of BDV infection in humans [12]. Several other studies have presented human cases of BDV infection in different psychiatric disorders, namely schizophrenia, learning problems, emotional disorders, and autism [13-15]. Some BDV-related antigens, antibodies, and RNAs were further detected in people with neurotropic symptoms, such as Parkinson's disease, chronic fatigue syndrome, Guillain-Barre syndrome, viral encephalitis, and multiple sclerosis [16]. Bornavirus was recently detected as the root reason for fatal human encephalitis following organ transplantation procedures, which remarkably enhanced the importance of this disease in humans [17].

BDV, as a negative-stranded RNA virus, has been enveloped by helical capsid [18]. BDV genome has six open reading frames, namely N, P, M, G, X, and L [19]. Molecular biological analysis has indicated that the P40/38 nucleoprotein, p10 protein, and P24 phosphoprotein are expressed continuously in the patient's cells [20]. The P24 protein has been identified at a higher ratio of P40 in the host tissue [21]. Techniques used for detecting BDV infection were indirect immunofluorescence with infected cells, western immunoblot, nested RT-PCR, real-time PCR, and ELISA [12]. Each of these methods faced problems; for example, nested PCR and real-time PCR cannot detect previous infection and there is a possibility of contamination, resulting in false positive results [22, 23]. The establishment of ELISA is facilitated by expressing and purifying large quantities of BDV recombinant antigens for the identification of BDV antibodies in biological samples [24]. ELISA for detecting BDV infection based on different BDV antigens has been performed in several vertebrate species, but so far this method based on P24 protein has not been investigated in rabbits [25, 26]. This study investigated the expression of P24 recombinant protein as well as the production of polyclonal antibodies against it in order to develop an ELISA for detecting BDV infection in laboratory rabbits.

Results

Borna-P24 Expression and Purification

The pET22b-Borna-P24 construct was transformed to E. coli BL21. Expression of Borna-P24 protein was induced through IPTG for 16 hours. The product of recombinant Borna-P24 protein expression was observed in SDS-PAGE. The weight range of this protein was about 25 KDa (Figure 1A). These results were validated by western blotting through anti-His-tag antibodies (Figure 1B).

Investigation of Immunized Rabbit Serum Activity by ELISA

To evaluate the immunogenicity of the recombinant protein, Borna-P24 was injected into one rabbit in four immunizations, and then, ELISA was performed to assess the immune response. The Borna-P24 protein was coated on the well and various dilutions of immunized rabbit serum were added. According to the results of the fourth injection, the antibody titer was enhanced (Figure 2). Therefore, the recombinant Borna-P24 protein had immunogenicity.

Recombinant Bornavirus P24 Protein for ELISA Assay Development

Abbreviations-Cont’d

X: p10 protein
L: Large protein
PCR: Polymerase chain reaction
RT-PCR: Reverse transcription PCR
ELISA: Enzyme-linked immunosorbent assay
IPTG: Isopropyl-beta-d-thiogalactopyranoside
PBS: Phosphate-buffered saline
SDS-PAGE: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
HRP: Horseradish peroxidase
RT: Room temperature
TMB: Tetramethylbenzidine
Recombinant Bornavirus P24 protein for ELISA Assay Development

Investigation of Selected Rabbit’s Serum Activity by ELISA

A total of 50 New Zealand white rabbits were selected from a herd of laboratories, and their previous bornavirus infection was assessed by ELISA. After collecting a peripheral blood sample from the marginal vein, the serum was isolated. In this experiment, recombinant Borna-P24 protein was used as an antigen. The result of ELISA was negative for the P24-Borna virus antibody (Figure 3). These results were similar to the negative control and no antibodies were detected in the sera of the tested rabbits.

Discussion

BDV, as a neurotropic, enveloped, negative-stranded RNA virus is responsible for the severe infections of neuron cells [27]. Evidence indicates that BDV has a wide host range that spans several vertebrate species and humans [28, 29]. In previous studies, the P40 and P24 antibodies of the bornavirus were detected in the blood of patients with mental disorders [30]. The P40 values were higher in the chronic stage, whereas the P24 values increased in resistant infections [31].

In this study, for monitoring previous infections, we selected the P24 protein and produced polyclonal antibodies against the P24 recombinant protein for developing ELISA. The expression and purification of P24 protein were performed in large amounts. The recombinant protein was utilized for rabbit immunization. Polyclonal antibody generation in immunized rabbits was confirmed by ELISA. In addition, ELISA was performed in the selected laboratory rabbit herd, and no antibodies were detected. The results were obtained with high reproducibility.

Previous studies have proposed different methods for diagnosing BDV infection in diseased hosts. It is well known that whatever methodology is employed must be sensitive enough to diagnose the disease. Moreover, it is important to avoid the possibility of contamination and false positive results. In the past, some studies suggested diagnostic methods based on nested PCR [21, 22]. This method has inherent problems, such as the risk of contamination during the process and the inability to quantify the result. Other studies have suggested real-time PCR as an optimal way to diagnose BDV infection [23, 32, 33]. In this method, despite quantifying the results, there is still a risk of sample contamination and receiving false positive results. In addition, it should be noted that the mentioned techniques require a significant investment for the required machines. Furthermore, in all types of PCR, only an active infection is identified.
and no previous infection is detected. Today, ELISA is an optimal and applied method in medical diagnostic laboratories. It is low-cost and allows one to check many serum samples with minimum facilities in a few hours. In previous studies, P40 protein was used as an antigen in ELISA [34, 35]. According to other reports, the P24 protein has a higher diagnostic value than other components [16, 21, 36]. Therefore, the P24 protein is the preferred antigen in ELISA.

Conclusions

The results of our study indicated that ELISA based on P24 protein has a high potential for diagnosing BDV infection. These results were obtained from a study on one immunized rabbit and 50 selected rabbits.

Materials & Methods

Gene Construction, Expression, and Protein Purification

BDV P24 gene sequence with a length of 615 bp subcloned to the expression plasmid pET22 in frame with His-tag was purchased from Biomatik (Canada) and named pET22-Borna-P24. This sequence is located between two restriction sites NdeI at the 5’ end and XhoI at the 3’ end. The construct was transformed into E. coli BL21 using heat-shock method and one colony was grown in 500 ml Luria-Bertani broth medium and expression of P24 protein was induced through 0.05 mM concentration of IPTG for 16 hours. Bacterial sediment was collected by centrifugation for protein purification and suspension in lysis buffer (100 mM NaH2PO4, 10 mM Tris–HCl, 8 M Urea, pH 8.0). Eventually, bacteria were lysed by sonication method. After loading the lysate on the Ni-NTA resin (Qiagen, Germany) column, washing buffer was used to prepare the resin (8 M urea, 10 mM Tris–HCl, 100 mM NaH2PO4 adjust to pH 6.0) and borna P24 protein was separated using the elution buffer (8 M urea, 10 mM Tris–HCl, 100 mM NaH2PO4 adjusted to pH 4.3). Purified protein was dialyzed against PBS, and then, lyophilized and stored in -20°C. Protein concentration was determined with BCA method.

SDS-PAGE and Western Blot

To evaluate the expression of recombinant protein, 12% SDS-PAGE was used. Protein bands in polyacrylamide gel were stained by Coomassie blue. The expressed proteins in the gel were then transmitted to the nitrocellulose membrane for western blotting. The membrane was placed in 3% casein-blocking buffer overnight at 4°C and then, washed with PBS three times. The membrane was incubated with 1/1000 anti-His tag antibody as a primary antibody and then with 1/2000 anti-rabbit HRP-conjugated as a secondary antibody. The membrane was stained with 3, 3’-diaminobenzidine solution.

Production of P24 Polyclonal Antibody

A New Zealand female rabbit was used for immunization. Fifty micrometers of Borna-P24 recombinant protein were injected subcutaneously into the rabbit. Immunization was boosted four times at two-week intervals. A recombinant protein with complete Freund’s adjuvant was used in the initial injection and incomplete adjuvant in others. Rabbits were bled from the marginal ear vein. Finally, specific polyclonal antibody titration was performed by ELISA. An amount of 1 μg/ml of recombinant Borna-P24 protein was coated in each well of the ELISA plate and was placed overnight at 4°C. Then, the plate was blocked by 3% skimmed milk and placed at room temperature for up to 1 h. PBS was used to wash the wells five times and 100 μl of serially diluted rabbit serum (1/100 to 1/3200) was added to each well and placed at room temperature for 1 h. With washing intervals, 100 μl of 1/2000 anti-rabbit HRP-conjugated was added and then, the plate was placed at room temperature for 1 h. One hundred microliter of 3, 3’, 5’, 5’-tetramethylbenzidine substrate was added to all wells, and the plate was incubated at room temperature for 10 min in the dark. Finally, the reaction was stopped by adding 100 μl of stop buffer (H2SO4, 2N) into all wells. Optical density was read at the wavelength of 450 nm by a UV/Vis spectrophotometer (Epoch, BioTek, USA).

Investigation of Serum Titers Against Borna-P24 in Rabbits Herd

Fifty New Zealand rabbits were selected at the laboratory animal center of the Pasteur Institute of Iran (Karaj, Iran). After blood sampling and isolation of serum, ELISA was performed with 1/1000 serum dilution. Rabbit serum immunized with Borna-P24 was used as a positive control.

Authors’ Contributions

Seyyed Narjes Sadat performed a number of practical experiments, Writing - original draft, Writing - review & editing, and reduction of the manuscript. Sahar Khalvand, Behzad Ramezani and Hajar-sadat Ghaderi performed a large number of practical experiments. Mahdi Habibi-Anbouhi and Fatemeh Kazemi-Lomedasht served as advisor. Mahdi Behdani; Writing - review & editing, served as advisors, supervision, formal analysis, reduction of the manuscript.

Acknowledgements

The authors wish to express their gratitude to all who provided support during the course of this research, especially Zahra Amirinia and Roghayeh Moghadam in KBC. This project was financially supported by KBC.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Recombinant Bornavirus P24 Protein for ELISA Assay Development

Recombinant Bornavirus P24 Protein for ELISA Assay Development

URL: https://ijvst.um.ac.ir/article_44851.html

How to cite this article
URL: https://ijvst.um.ac.ir/article_44851.html

COPYRIGHTS
©2024 The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.

Radiological and Anatomical Features of the Skull Bones of Adult Husky Dogs

Saman Ahani, Siamak Alizadeh, Mohammad Reza Hosseinchi

Department of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran.
Department of Clinical Sciences, Naghadeh Branch, Islamic Azad University, Naghadeh, Iran.
Department of Basic Sciences, Urmia Branch, Islamic Azad University, Urmia, Iran.

ABSTRACT
Considering the role of skull bones in preserving vital organs, paying close attention to the shape and size of the skull is of great importance when various conditions, such as head trauma, are suspected. However, in order to confirm the suspicion radiologically, examiners need to have detailed information on the normal skull characteristics of each breed. This study aimed to evaluate the radiological and anatomical features of the skull in adult Husky dogs. The current descriptive cross-sectional study examined eight adult Husky dogs (four males and four females) that died due to different conditions, excluding those of the head. After the preparation of the skulls, radiographs were obtained on different views. In addition, the bones were examined in terms of morphological characteristics. Morphometric indices were also measured and the results were recorded. Based on the results of this study, the skull of Husky dogs consists of 11 cranial bones (Ossa cranii), and 21 facial bones (Ossa faciei). Three parameters, including the height and the length of tympanic bullae as well as the orbital index, were greater in females compared to males. However, the differences were not significant. Other parameters were greater in male dogs. The whole skull length and maximum width of the skull showed significant differences between the two genders ($p \leq 0.05$). The precise standards obtained in the current study can be used in interpreting the results to determine whether the presenting characteristics are abnormal or breed-dependent.

Keywords
Radiology, Anatomy, Dog, Husky, Skull

Abbreviations
CT: Computed Tomography
TBH: Greatest height of the tympanic bulla
TBL: tympanic bulla length
WSL: Whole skull length
MWS: Maximum width of the skull

Number of Figures: 12
Number of Tables: 1
Number of References: 27
Number of Pages: 12
Introduction

A variety of diseases, ranging from congenital to acquired ones, can affect the shape and size of the skull in dogs. Considering the importance of organs encased in the skull, such as the brain, changes in the architecture of this region are highly probable to be clinically significant [1]. This obligates examiners to pay close attention to the shape and size of the skull. However, owing to anatomical breed variations in dogs, it is not feasible to precisely realize whether the presenting shape of the skull is abnormal or breed-dependent unless there are thorough measurements of specific characteristics of each breed to serve as standards when needed [2]. Although different studies have examined skull morphology in Tarsus Çatalburun [3], Saarloos wolfdog [4], grey wolf [5], Lynx [6], red fox [7], vulpes [8], or golden jackals [9], no published article has studied that of Husky dogs.

Husky is known as a medium-sized, thickly furred, double-coated dog. It has erect triangular ears and distinctive markings on the head and has inherited the well-developed frontal sinuses of wolves, which is a useful way of distinguishing their skull from coyotes and foxes [10].

When skull examination is considered, CT is normally the modality of choice and helps operators to best appreciate subtle changes, such as small fractures [11]. This is mainly because of omitting the superimposition of the complex anatomy of the skull in CT [12]. However, despite its merits, CT is not usually available in all medical centers. Therefore, considering the ubiquity of radiology machines, radiography usually remains the only available choice in many medical centers at the time of this study.

The current research was conducted to investigate the radiological and anatomical features of the skull bones of adult Husky dogs.

Results

Morphological results

The skull of a Husky dog is composed of two parts: ossa cranii and ossa faciei. A total of 32 bones, including 11 cranial bones (three odd and four even bones) and 21 facial bones were assessed. Ossa cranii consisted of occipital, sphenoid, ethmoid, interparietal, parietal, frontal, and temporal bones. Facial bones consisted of maxilla, incisive, palatine, pterygoid, nasal, lacrimal, zygomatic, turbinate, mandible, vomer, and hyoid bones (Figure 1).

Cranial bones

Occipital bone: The whole nuchal surface of the skull was composed of occipital bone. This bone participates in the formation of the cranial surface and regions of the skull and contains a condyloid canal. Two short jugular processes were positioned on the sides of the condyles and hypoglossal canal. Muscular tubercles were also present. The intraparietal bone was completely joined with the nuchal bone and formed the interparietal process. The nuchal crest was relatively eminent and muscular prints were observable. The mastoid foramen was located on the caudal surface of the bone. The foramen magnum was relatively big and circular (Figure 1).

Sphenoid bone: There was more than one ethmoid foramen on the sphenoid bone. Round foramen was located on the alar canal and in the dorsal and internal parts of the alar canal. Oval foramen was observed in the caudal alar foramen. Spinous foramen was jointed with oval foramen.

Ethmoid bone: This bone was composed of three regions: the cribriform plate, crista galli, and ethmoidal fossa. Two ethmoidal foramina were seen on the sides of the plates and the optic canal. Cribriform plate had small foramina. A perpendicular plate was located between the nasal crest and crista galli. Lateral masses were positioned in the sides of the nose and composed of bone screws.

Interparietal bone: This bone was observed in the interparietal process jointed with the occipital bone (Figure 2).

Parietal bone: The results showed that this bone formed the major part of the skull. It has squamous, nasal, orbital, and temporal parts, as well as the zygomatic process. However, it did not contain supraorbital foramen. The zygomatic process was small and the frontal process was not jointed with the zygomatic bone. Two ethmoid foramina were observable in the frontal bone and on the edge of the sphenoid bone.

Frontal bone: It took part in the formation of orbits and had no special breed traits.

Temporal bone: This bone is composed of three parts; the tympanic part is located ventrally and comprises tympanic bullae. The squamous part possessed a zygomatic process which was jointed to the zygomatic bone and formed the zygomatic arc. No articular tubercle was found on this part. The mastoid process was located dorsally on the petrous part of the temporal bone.

Facial bones

Maxillary bone: On this bone, the facial crest and facial tuber were not detectable. The infraorbital foramen was located in the upper section of the third premolar teeth. Maxilla had frontal processes connected to the frontal bone. The alveolar process had cavities for premolar and molar teeth. The palatine process was joined with the median palatine suture. Palatine bone...
Figure 1.
Oblique lateral view of adult male husky dog skull. Parietal bone (P), Temporal bone (T), Frontal bone (F), Premaxilla bone (pM), Lacrimal bone (L), Maxilla bone (M), Zygomatic bone (Z), Zygomatic process of temporal bone (ZpT), Temporal process of zygomatic bone (TpZ), Zygomatic process of frontal bone (ZpF), Coronoid process (crp), Condyle process (cnp), Angular process (ap), Ramus of mandible (rM), Body of mandible (bM), External acoustic meatus (eam), Jugular process (jp), Occipital condyle (Oc), Mastoid foramen (maf), external sagittal crest (esc), Incisive teeth (iT), Canine tooth (cT), Premolar teeth (pT1-4), Molar teeth (mT1-3).
and palatine process of the maxilla and also transverse palatine suture were observed. The ventral surface of the palatine process and palatine groove were seen within the major palatine foramen (Figure 3).

Incisive bone: The body of incisive bone was formed as a thin palate with three alveoli for upper incisive teeth. Processes nasalis was observed jointed with nasal bone. The nasal process was well extended. The palatine process was formed as thin plates in the rostral part of the hard palate. Incisive sutures and palatine fissures were also observable in this region.

Palatine bone: It was formed by 33% of the length of the hard palate and formed the caudal part of this bone. The vertical plate of the bone participated in the formation of the lateral wall of the nasal foramen. The vertical palate was curved in the most ventral part toward the pterygoid process of the palatine bone.

Pterygoid bone: This bone was located lateral to the caudal foramen of the nasal bone. It terminated in the hock part of the hamulus.

Nasal bone: This bone formed the major part of the nasal cavity and its terminal part was concave in shape. Between nasal cavities were intranasal suture, nasal bone, and incisive bones.

Lacrimal bone: This bone was positioned between the lacrimal bone and the maxilla. The bone participated in the formation of orbit parts. The temporal process of the zygomatic bone was joined with the zygomatic process of the temporal bone, forming the zygomatic arch.

Vomer bone: The bone was positioned in the bottom of the nasal cavity as the septal sulcus. The bone was located in the distance with the nasopharyngeal meatus.

Turbinate bones: They were in the form of helix. Different parts of these bones were attached to their adjacent walls laterally.

Mandible bone: The Mandible was the largest facial bone and jointed with temporal condyles. Its ventral part was convex in shape. The alveolar border of the incisive part was composed of three alveoli for incisive teeth and one alveolus for canine teeth. The molar part had seven cavities for molar and premolar teeth. The external part of the mandible and its border had more than a mental foramen. In the perpendicular section, the mandibular canal was seen. Masseteric fossi were also observed as depressions on the ramus of the mandible. Mandibular foramen was terminated in mandibular canal. The articular extremity on the perpendicular section of the mandible had a coronoid process, condylar process, and mandibular notch. The angle of the mandible had an angular process (Figure 4).
Hyoid bone: This bone was jointed with the styloid process of the temporal bone. It had basihyoid, thyrohyoid, ceratohyoid, epithyoid, and stylohyoid parts.

The results in Table 1 show that TBH, TBL, and orbital indices were higher in female dogs compared to male dogs; however, the differences were not significant. All other parameters were higher in male dogs, among which WSL and MWS had significant differences (p ≤ 0.05).

Radiological results

Graphs taken in the dorsoventral position showed that the ethmoidal fossa, frontal sinus, brain cavity, external auditory canal, and tympanic bulla were detectable. Occipital bone was observable ventral to the nuchal bone. Ethmoid bone was located between the cranial cavity and nasal region, yet their foramina were not detectable. The bone was fused with pre-sphenoid, vomer, and palatine bones. In dorsoventral graphs, teeth, nasal bone, incisive bone, and palatine bones were detectable. Occipital bone was observable ventral to the nuchal bone. The nasal bone was jointed with the incisive bone in the rostral region and formed a nasal cavity. The anterior extremity of the bone was concave. The bone was connected with occipital bone in the cranial region, with parietal bone in the upper region, and with sphenoid bone in the lower part. According to the radiographs, squamous and petrous parts of the temporal bone were not detectable. Upper and lower teeth, maxilla, pre-maxilla, mandible zygomatic arch, frontal, parietal, intraparietal, tympanic bulla, and occipital bones were observable (Figure 6).

On the oblique open-mouth view, the frontal bone appeared convex in shape, especially in the cranial region. The supra-orbital groove was not detectable. The nasal bone was jointed with incisive bone in the rostral region and formed a nasal cavity. The anterior extremity of the bone was concave. The bone was connected with occipital bone in the cranial region, with parietal bone in the upper region, and with sphenoid bone in the lower part. According to the radiographs, squamous and petrous parts of the temporal bone were not detectable. Upper and lower teeth, maxilla, pre-maxilla, mandible zygomatic arch, frontal, parietal, intraparietal, tympanic bulla, and occipital bones were observable (Figure 6).

In the alveolar border, the incisive part contained three alveoli for incisive teeth and one alveolus for canine tooth. The molar part had seven cavities for pre-molar and molar teeth. Mental foramen was observable, but the

Table 1.

<table>
<thead>
<tr>
<th>Parameters (mm)</th>
<th>Male, n= 4</th>
<th>Female, n= 4</th>
<th>Total, n= 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSH 1</td>
<td>98.42 ± 0.63</td>
<td>98.67 ± 0.79</td>
<td>97.64 ± 0.77</td>
</tr>
<tr>
<td>WSL 2</td>
<td>214.74 ± 1.21</td>
<td>203.37 ± 1.76</td>
<td>209.15 ± 1.50</td>
</tr>
<tr>
<td>SHWM1 3</td>
<td>75.29 ± 0.62</td>
<td>71.32 ± 0.59</td>
<td>73.30 ± 0.64</td>
</tr>
<tr>
<td>SHWM2 4</td>
<td>81.15 ± 0.63</td>
<td>78.41 ± 0.72</td>
<td>79.84 ± 0.71</td>
</tr>
<tr>
<td>MWS 5</td>
<td>115.52 ± 0.69</td>
<td>107.20 ± 0.84</td>
<td>111.36 ± 0.75</td>
</tr>
<tr>
<td>FBL 6</td>
<td>73.32 ± 0.39</td>
<td>70.23 ± 0.59</td>
<td>71.77 ± 0.51</td>
</tr>
<tr>
<td>NBL 7</td>
<td>84.82 ± 0.76</td>
<td>79.27 ± 0.72</td>
<td>82.04 ± 0.73</td>
</tr>
<tr>
<td>FNE 8</td>
<td>52.05 ± 0.32</td>
<td>49.16 ± 0.53</td>
<td>50.60 ± 0.51</td>
</tr>
<tr>
<td>MDL 9</td>
<td>158.87 ± 1.97</td>
<td>152.66 ± 1.15</td>
<td>155.76 ± 1.13</td>
</tr>
<tr>
<td>MSL 10</td>
<td>33.49 ± 0.25</td>
<td>32.14 ± 0.29</td>
<td>32.81 ± 0.26</td>
</tr>
<tr>
<td>PAL 11</td>
<td>47.96 ± 0.53</td>
<td>45.08 ± 1.024</td>
<td>46.52 ± 0.849</td>
</tr>
<tr>
<td>UMP 12</td>
<td>32.2 ± 0.192</td>
<td>31.2 ± 0.288</td>
<td>31.70 ± 0.241</td>
</tr>
<tr>
<td>TBL 13</td>
<td>22.38 ± 0.19</td>
<td>22.41 ± 0.22</td>
<td>22.39 ± 0.23</td>
</tr>
<tr>
<td>TBW 14</td>
<td>16.55 ± 0.38</td>
<td>15.32 ± 0.30</td>
<td>15.93 ± 0.41</td>
</tr>
<tr>
<td>TBH 15</td>
<td>16.67 ± 0.20</td>
<td>16.70 ± 0.27</td>
<td>16.68 ± 0.25</td>
</tr>
<tr>
<td>EAPH 16</td>
<td>6.19 ± 0.11</td>
<td>5.96 ± 0.08</td>
<td>6.07 ± 0.09</td>
</tr>
<tr>
<td>EAPW 17</td>
<td>6.72 ± 0.11</td>
<td>6.64 ± 0.09</td>
<td>6.68 ± 0.13</td>
</tr>
<tr>
<td>OVID 18</td>
<td>26.23 ± 0.18</td>
<td>25.95 ± 0.17</td>
<td>26.09 ± 0.15</td>
</tr>
<tr>
<td>OHD1 19</td>
<td>23.89 ± 0.18</td>
<td>23.76 ± 0.27</td>
<td>23.82 ± 0.26</td>
</tr>
<tr>
<td>OHD2 20</td>
<td>23.84 ± 0.29</td>
<td>22.12 ± 0.22</td>
<td>22.97 ± 0.31</td>
</tr>
<tr>
<td>Orbital index (%)</td>
<td>89.07 ± 4.27</td>
<td>90.32 ± 7.72</td>
<td>89.67 ± 5.11</td>
</tr>
<tr>
<td>Cephalic index (%)</td>
<td>53.79 ± 2.85</td>
<td>52.85 ± 6.55</td>
<td>53.26 ± 5.01</td>
</tr>
</tbody>
</table>

χ²(3)=1532, p ≤ 0.001

1 Whole skull height, 2 Whole skull length, 3 Skull height without the mandible: the height of skull from the most dorsal point of frontal bone to the most ventral point of sphenoid bone, 4 Skull height without the mandible: the highest point of frontal bone to the lowest point of Jugular processes, 5 Maximum width of the skull, 6 Total length of frontal bone, 7 Total length of the nasal bone, 8 Length of parietal bone, 9 Length of the mandibular bone, 10 Mandibular symphysial length, 11 Length of palate, 12 Length of the perpendicular plate of the palatine, 13 Tympanic bulla length, 14 Width of the tympanic bulla, 15 Greatest height of the tympanic bulla, 16 Height of the external auditory opening, 17 Width of the external auditory opening, 18 Orbital height/vertical diameter, 19 Orbital width/horizontal diameter: from the point of zygomatic arch, directed rostrally at 90° to the rim of the orbit, 20 Orbital width/horizontal diameter: from the point of the zygomatic arch, directed rostrally in a straight line to the rim of the orbit at the lacrimal fossa.

Superscript * shows statistically significant difference between male and female parameters. Superscript # shows values which were higher in females with no statistically significant differences (P ≤ 0.05).
masseteric fossa was not detectable. Coronoid processes, condylar process, mandibular notch, and angle of the mandible with angular process were detectable (Figure 7).

Figure 5. Dorso-ventral view (A) and ventro-dorsal view (B) of adult husky dog skull. 1: Incisor teeth, 2: Canine tooth of the lower jaw, 3: Canine tooth of the upper jaw, 4: Horizontal ramus of mandible, 5: Vomer bone, 6: Fourth premolar tooth of the upper jaw, 7: First molar tooth of lower jaw, 8: Nasal cavity, 9: Ethmoidal bone, 10: Frontal bone, 11: Zygomatic arch, 12: Coronoid process of mandible, 13: Parietal bone, 14: Mandibular condyle, 15: Brain cavity, 16: External auditory canal, 17: Tympanic bulla, 18: Occipital condyle.

Figure 6. Dorso-ventral view (A) and ventro-dorsal view (B) of adult husky dog skull. 1: Incisor teeth, 2: Canine tooth of the lower jaw, 3: Canine tooth of the upper jaw, 4: Horizontal ramus of mandible, 5: Vomer bone, 6: Fourth premolar tooth of the upper jaw, 7: First molar tooth of lower jaw, 8: Nasal cavity, 9: Ethmoidal bone, 10: Frontal bone, 11: Zygomatic arch, 12: Coronoid process of mandible, 13: Parietal bone, 14: Mandibular condyle, 15: Brain cavity, 16: External auditory canal, 17: Tympanic bulla, 18: Occipital condyle.
Discussion

This study was conducted to evaluate the radiological and anatomical features of the skull bones in adult Husky dogs. Several studies have reported measures, locations, and shapes of skull bones in other species, such as wolves, foxes, and Aksaray Malakli dogs [4, 13, 14].

Previous studies on the skull morphometry of German shepherds showed that the length of the skull is 14.38 cm, while it is 16.22 cm in the Nigerian local dog, both of which are smaller than that of Husky (25.65 cm). In another study conducted on the Kangal dog, the skull was reported to be 25.87 cm in length which is roughly the same size as Husky in the current study [15].

The current research revealed that the skull width of Huskies was 11.13 cm which was larger than that of the Nigerian local dog (8.49 cm), but smaller than that of the Kangal breed dog (13 cm) [15, 16]. These variations indicate the normal breed variants in different breeds of dogs.

The head index in our study was calculated to be 53.26% ± 5.01%, whereas the corresponding values for the Russian Dolicocephalic Collie, Wolfhound, Mesaticephalic German Shepherd, and Brachycephalic Boston Terrier breeds were 48%, 56%, 58%, and 81%, respectively. As a result, head index in Husky dog was closer to the Wolfhound's [17, 18]. The Niger dog's orbital index was 80.87. More precisely, orbital indices of males were higher (81.57) than females (80.35) [16]. The orbital indices of huskies, on the other hand, were lower in males (89.07) than in females (89.67).

Couturier et al. (2005) reported that the nuchal crest in medium-sized dogs was slightly prominent and had no tubercles, while the results of the current study revealed that the nuchal crest was quite prominent in the Husky dog, beneath which were two distinct tubercles (muscular print). The mastoid foramen was located on the caudal surface of this bone [19].

Andreis et al. (2016), in a study on mesaticephalic dogs, reported only one small irregular foramen on the cribriform plate of the ethmoid bone, while there were two distinct holes on the cribriform plate of the ethmoid bone of Husky dogs. The cribriform plate itself had numerous small foramina with round edges being located next to the alar canal [20].

Our results are in agreement with the findings of Hermanson et al. (2018), stating that the temporal bone of medium-sized dogs has squamous, tympanic, and petrous parts in addition to a zygomatic process. This process joins with the temporal process of the zygomatic bone to form the zygomatic arch. The tympanic bulla was very large and a small muscular process was extended to its front. Based on our findings in the Husky breed, the mastoid process, as well as the muscular process of the temporal bone, were atrophied and the styloid process was also very small [21].

In 2020, Watson reported tuberosities of the maxillary bone, such as facial crest, in small- and large-sized dogs, and outlined their characteristics. However, according to the radiological findings of our study, the maxilla of Husky dogs did not have a facial crest and facial tuber. The infraorbital foramen was shown to be located dorsal to the third premolar tooth [22]. The radiological findings were confirmed in anatomical studies. This bone only had a frontal appendage which was attached to the frontal bone.
Some diagnostic imaging studies showed that the ethmoid bone in dogs has recognizable foramen [23, 24]. The results of the current study revealed that the ethmoid bone was located between the cranial cavity and nose and no foramen was recognizable. In addition, it was found that the ethmoid bone was fused to the caudal part of the presphenoid. It was also rostroventrally merged with vomer and palatine, and rostro-dorsally with frontal bones.

It has been stated that different factors, such as nutrition, influence the skull morphology; high-quality diets may help bones grow to a larger extent [25]. According to the owners, cases in this study were fed on a mixed diet, including chicken and skeleton. The authors did not manage to find other studies investigating the radiological and anatomical features of the skull bone in adult Husky dogs fed on different types of diets. Therefore, no comparative conclusion could be made in this regard.

The results showed that the cephalic index was 53 in both genders. The findings were parallel with several studies on the cephalic index of other species and breeds. Urošević et al. (2021) reported a skull index of 64 in Yugoslav shepherd dogs [26]. Moreover, Gál et al. (2022) reported a value of 53.13±3.35 in grey wolf which was in agreement with our findings [9]. Another study also reported the values of 52.52 and 52.53 in red foxes which were close to our findings [7].

In conclusion, this study was conducted to investigate the radiological and anatomical features of the skull bones in adult Husky dogs. The results showed both similarities and differences between Husky and other breeds of dogs. The findings of the current study can be used in making diagnostic and clinical decisions to distinguish the normal and abnormal size and shape of the skull bones of adult Husky dogs.

Materials & Methods

Animals

In the current descriptive cross-sectional study, eight adult husky dogs (four males and four females), with an average age of 6.40 ± 1.50 years, and a mean weight of 23.37 ± 3.65 kg were studied. In order to collect the skulls, the objectives of this study were explained to the officials of veterinary hospitals. Following their agreements, Husky dogs, dead or euthanized due to different disorders, were sent to the center where the current study was held. None of the cases died due to diseases related to the head. The approximate age of each dog was confirmed using the dental formula [27].

Description of the method

Radiographs of the skulls were obtained on dorsoventral, ventrodorsal, and left and right lateral recumbency. The focal film distance was 100 cm, and the applied kVp and mAs were 55 and 4, respectively. The radiographs were taken using a digital device (Ralco-S.r.l DR, Italy). The detector was a SCI flat panel type with a size of 24×30 cm, and the software used to process images and measure the structures was Varian and Drgem.

In order to prepare the skulls, the skin and muscles of the head and neck were removed using dissection tools. Skull bones were then flushed with water, soaked in KOH for 5 days, and whitened using H$_2$O$_2$ (Figure 8). The skull was dried by sunlight for 7 days. Morphometric parameters were measured by a caliper and the mean was reported [15, 16]. Whole skull height was considered as the distance between the most dorsal surface of the frontal bone and the most ventral surface of the mandible bone. Skull height without the mandible was considered as the height of the skull from the most dorsal point of the frontal bone to the most ventral point of the sphenoid bone in the foramen magnum. Skull heights without the mandible were measured from the highest point of the frontal bone to the lowest point of the jugular processes. Height of the external auditory opening and width of the external auditory opening were calculated as the distance between the dorsal and ventral regions of the open-
ing and the distance between the two regions, respectively. Orbital height/vertical diameter was measured from the ventral region of the orbit. Orbital width/horizontal diameter was calculated from the point of the zygomatic arch directed rostrally at 90° to the rim of the orbit. Orbital width/horizontal diameter was considered from the point of the zygomatic arch directed rostrally in a straight line to the rim of the orbit at the lacrimal fossa. The orbital index was calculated as the width to the height of the orbit and reported as a percent. The cephalic index was reported as the width to the length of the skull in percent (Figure 9). The maximum width of the skull was considered as the width of the skull from one zygomatic bone to the other. The whole skull length was considered as the distance of the rostral part

Figure 9.
Lateral view of the adult male husky dog skull. Whole skull height (WSH), Skull height without the mandible (SHWM1), Skull heights without the mandible (SHWM2), Height of the external auditory opening (EH), Width of the external auditory opening (EW), Orbital height/vertical diameter (OVD), and Orbital width/horizontal diameter (OHD).

Figure 10.
Ventral view of the adult male husky dog skull. Maximum width of the skull (MWS), Whole skull length (WSL), Length of the palate (PAL), Length of the perpendicular plate of the palatine (UMP), Typanic bulla length (TBL), and Width of the typanic bulla (TBW).
of incisive alveoli to the most caudal region of the occipital bone. The length of the palate was evaluated in the median line from the palatine bone to the caudal foramen. The length of the perpendicular plate of the palatine bone is considered the most caudal part of the caudal bone foramen to the suture of the vertical plate of the palatine bone. The greatest height of the tympanic bulla, tympanic bulla length, and width of the tympanic bulla were also measured (Figure 10). The total length of the frontal bone was measured as the anterior section of bone to the suture region of this bone. The overall length of the nasal bone was assessed as the terminal part of the frontal bone to the rostral part of the nasal bone. The length of the parietal bone was considered as the length of the frontoparietal suture to nuchal eminence (Figure 11). The length of the mandibular bone was evaluated as the length of the mandible to the caudal part of the condyloid. The mandibular symphysial length was evaluated as the symphysial length of the mandible, originating from the rostral to the cranial part of the region (Figure 12).

Statistical Analysis
Data were analyzed using SPSS v.24 and expressed as mean ± SD. The student t-test and ANOVA were used to compare the means. P-value < 0.05 was considered statistically significant.
Authors' Contributions

SA and MRH conceived and planned the experiments. SA and MRH, ALA contributed to sample preparation. SA, MRH contributed to the interpretation of the results. SA and SA took the lead in writing the manuscript. All authors provided critical feedback and helped shape the research, analysis and manuscript.

Acknowledgements

The authors thank the Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran, for all of the facilities.

Conflict of interest

The authors declare that there is no conflict of interest.

References

DOI: 10.22067/ijvst.2024.82573.1255

Molecular Identification of *Mycobacterium avium* subsp. *Paratuberculosis* isolated from ELISA-Positive Samples by Nested PCR

Mahsa Soleimani, Alireza Shahrjerdi, Mitra Salehi

* a Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.
* b National Institute for Genetic Engineering and Biotechnology, Tehran, Iran.

ABSTRACT

Paratuberculosis (Johne’s disease) is a chronic granulomatous small intestine disease caused by MAP. Diagnosing and isolating infected animals is the most important measure for controlling the disease. Therefore, this study aimed to molecularly identify mycobacterium isolated from ELISA-positive cows with Johne’s disease by nested PCR from the samples from Markazi Province, Iran. For this purpose, 2938 samples were decontaminated and then cultured on the Herrold egg culture medium containing mycobactin and no mycobactin. After DNA extraction, PCR for 16S rRNA was first performed, followed by nested PCR on positive samples. Of 2938 samples, 87 were positive, and 26 were suspected. All positive isolates were observed in Ziehl-Neelsen staining in microscopic expansion. A 543-bp band was observed in 26 tested samples and mycobacterium strains in PCR for 16S rRNA, indicating the presence of mycobacterium in the above samples. Nested PCR was performed for all isolates and positive and negative control strains. A 398-bp band was obtained in the first stage, and a 298-bp fragment was obtained in the second stage, indicating the presence of MAP in the samples. Accordingly, nested PCR is suggested as a proper method for the quick and definitive diagnosis of disease cases.

Keywords

Mycobacterium avium, Johne’s disease, 16S rRNA, Nested PCR

Abbreviations

MAP: *Mycobacterium avium* subsp. *paratuberculosis*
RVSRI: Razi Vaccine and Serum Research Institute
bp: base pair
TE: Tris/EDTA

https://IJVST.um.ac.ir
Introduction

Johne’s disease is a progressive chronic granulomatous enterocolitis in ruminants caused by MAP. MAP is a 0.5-2 μm, very slow-growing, acid-fast, mycobactin-dependent, and very stable pathogen that can survive in various media for a long time [1]. This bacterium enters the intestinal epithelial cells of cattle and other mammals, causing irreversible damage to infected animals, such as indigestion, diarrhea, vomiting, reduced reproduction, and death in various cases [2]. MAP is a silent, chronic, surprising infection considered a serious risk for the animal husbandry industry. Dealing with this disease is very costly and causes the early elimination of breeding livestock, reduction of livestock products, and heavy economic damage to stockbreeders.

Culturing is the technique used to precisely identify this bacterium, but this technique faces numerous challenges. The disease cannot be diagnosed in the early stages of culturing, and ELISA screening is recommended during this period. Furthermore, the incubation period of this disease is very long, with very slow growth. Consequently, molecular methods are used for the diagnosis and epidemiological investigations of this disease [3].

Johne’s disease has existed for many years in Iran’s ruminants. Considering similar clinical symptoms and molecular isolation and diagnosis of this bacterium in most patients with Crohn’s disease, this bacterium is assumed to play a role in Chron’s disease in humans. Therefore, scientists consider this bacterium a potentially serious threat to public health. Despite the high frequency of MAP in Iran’s livestock [4-6], it is challenging to study the actual prevalence of the disease due to the high insensitivity of diagnostic methods and different testing and sampling methods in distinct countries. Notably, comprehensive research has not been conducted in Iran, but scattered studies have been performed using diverse methods.

A high-efficiency vaccine is required to prevent the disease caused by this bacterium. The disease situation in Iran must be first identified to run the disease control program, and control programs should be then performed accordingly.

This study aimed to isolate and determine the molecular identity of mycobacterium from ELISA-positive suspicious cows with Johne’s disease from the samples of Markazi Province sent to RVSRI.

Results

ELISA. Of 2938 cow samples from dairy farms in Markazi and Alborz provinces, 87 positive and 26 suspicious samples were obtained using ELISA.

Culture. Initial isolation and MAP recultivation were performed using the Herrold egg culture medium (Figure 1; A). Ziehl–Neelsen staining confirmed the accumulation of acid-fast bacilli in 26 suspicious samples (Figure 1; B). Bright bacteria were also observed in the fluorochrome method (Figure 1; C).

PCR. The quantity (a concentration of 300-800 ng/mL and a wavelength of 260 nm) and quality (an obvious bond) of extracted DNA were suitable.

PCR for 16S rRNA. At this stage, the 16S rRNA gene amplification confirmed isolates belonging to the mycobacterium genus. The PCR product length for this gene was 543 bp (Figure 2; A).

Nested PCR. The product length of 398 bp confirmed that isolates belonged to MAP (Figure 1; A). Finally, MAP was identified by producing a 298-bp fragment (Figure 1; C).

Figure 1. MAP culture on Herrold’s egg yolk medium with mycobactin-J (A), Ziehl-Neelsen (B), and fluorochrome (C) staining of isolates.
Johne’s disease is a serious problem due to the economic damage it causes to the livestock industry worldwide. Paratuberculosis also causes significant economic damage to the industry in Iran, but its extent is still unknown. Therefore, the diagnosis and control of diseases in ruminant herds is very important [8, 11]. The clinical symptoms of livestock are not solely reliable, as confirmed by the results of various studies on cows examined by the Johnin test, because this test fails to diagnose infected livestock among the suspected cases. Consequently, using molecular methods in Iran as a complementary test considerably helps dairy herds’ health and, thereby, human society’s health [10, 12].

Culturing on specific solid media is the most sensitive and specific method for diagnosing Paratuberculosis in livestock. However, culture-based methods are time-consuming and experimentally challenging for this bacterium [11]. Accordingly, new PCR-based molecular methods are used as proper alternatives for detecting the bacterium. Moreover, secondary contamination and drying of the culture medium may occur during long incubation periods, causing false negative results [10, 12].

The IS900 marker is specific to the MAP genome. However, unrealistic results may be observed depending on the type of selected primers due to the genetic similarity of the insertion sequence and its similar genetic units, known as pseudo-IS900 factors. There are reports on this case [13]. As a result, using equivalent genetic markers can improve the precision and correctness of identity tests. For this reason, in addition to the PCR-IS900 test in this study, nested PCRs using the P90 and P91 primers on the samples, and then the primers AV1 and AV2 were used.

Numerous PCR-based molecular techniques with high sensitivity and specificity have been proposed to quickly detect the bacterium [14]. However, nested PCR was used to confirm the isolates due to the lower sensitivity of usual PCR than nested PCR. Numerous studies have been recently conducted in this area, reporting the higher sensitivity of nested PCR than other methods in some cases. Abdolmohammadi et al. [8], Corti and Stephan [15], Haghkhah et al. [5], Jafari [16], and Doosti [17] identified MAP-infected cases using this technique.

Seyyedin et al. designed three primer pairs for the IS900 sequence, including Para1F/Para4R, Para2F/Para3R, and P90F/P91R, producing a 210-bp fragment. Their results showed that, except in one case, all positive cultured cases were consistent with nested PCR [18]. Soumya et al. reported a higher sensitivity of nested PCR than culture and ELISA [19].

Comparing the results of direct observation, ELISA, culturing, and nested PCR in examining the contamination of the milk tanks of dairy farms to MAP showed that 82 samples (82%) were positive in culture, 94 (94%) in nested PCR, 98 (98%) in ELISA, and only 33 (33%) in direct observation. Four samples were positive in ELISA but were negative in PCR. These 4 samples, along with the other 12 samples whose ELISA was positive (16 samples), did not have bacterial growth in the culture medium [8]. Overall, the results of this study confirmed the superiority of nested PCR over other methods employed in this study. The contamination of the dairy cows of Kerman Province to MAP was examined and identified using microbial culture, PCR, and nested PCR [10]. Comparing these methods showed the superiority of nested PCR in detecting MAP, as confirmed by our results.

Abdolmohammadi et al. isolated MAP from...
suspicious samples and examined them using nested PCR. Of 142 suspicious samples, 47 isolates were obtained. All positive isolates were acid-fast bacilli in Ziehl-Neelsen staining. In 83 samples of 142 samples and mycobacterium strains in PCR for 16S rRNA, a 543-bp band was observed, indicating the presence of mycobacterium in the samples. Nested PCR was performed on all isolates and positive and negative control strains, confirming the presence of MAP by generating a 398-bp fragment in the first stage and a 298-bp fragment in the second stage [8]. The consistency of our results with those reported by Abdolmo-hammadi et al. suggests that nested PCR can be used as a quick and definitive method for diagnosing the disease.

Some recent studies showed that the simple, one-step PCR cannot detect MAP in some cases, particularly at low DNA templates [20]. Single PCR is not sensitive enough as a diagnostic test for clinical samples. This low sensitivity of single PCR has been reported previously and was attributed to the presence of amplification inhibitors. Research on MAP has, however, found that this lower sensitivity of the standard amplification protocol when applied to clinical samples is neither solely due to the presence of inhibitors nor to the extraction of mycobacterial DNA [21]. It was found that when a standard amplification protocol is used, the technique can detect DNA from MAP in samples containing >100 CFU/mL but is frequently negative for samples containing fewer organisms [22]. An amplification of the latter samples was possible using nested PCR.

Consequently, the more reliable and sensitive nested PCR was used in this study to detect this infectious factor. This test was used due to its ability to search and amplify very low DNA contents. We have tested nested PCR for the rapid detection of paratuberculosis infection in suspicious clinical samples and compared its performance with bacteriological culture and single PCR. Nested PCR had an increased sensitivity for the detection of MAP, approaching that of culture.

Conclusion

It can be argued that ELISA can be very helpful in examining the status of samples and monitoring the progress of disease control programs. It is recommended as a screening method for Johne’s disease. However, this test may produce false positives and negative results. Therefore, culture or PCR should be used after detecting the infected cases by ELISA for the definitive diagnosis of the disease. Nested PCR significantly improves the sensitivity of detecting MAP and can be useful for the quick diagnosis of paratuberculosis. However, PCR inhibitors are a major hindrance. Accordingly, nested PCR is suggested as a proper method for the quick and definitive diagnosis of disease cases.

Materials & Methods

Collection of samples

Of 2938 cows from Markazi Province dairy farms (Arak: 497, Khomein: 101, Shazand: 66, Delijan: 328, Komijan: 26, Farahan: 17, Saveh: 498, and Zarandiyeh: 1405 samples), 6 mL blood was taken from the Jugular vein and sent to the RVSRI reference laboratory where the sera were separated. Microtubes were stored at -20°C for ELISA and PCR.

ELISA

ELISA was performed for all 2938 serum samples using an ELISA paratuberculosis kit (Cat No. RVJ99001, RVSRI) according to the standard instructions [7]. To this end, the wells were coated with MAP316F antigen. In the next step, 10 μL of the serum samples was mixed with 300 μL dilution buffer in a blank plate and then, the mixture was incubated at 25°C for 30 min, and 100 μL of this mixture was transferred to the main plate and the plate was incubated at 25°C for 30 min. After 5 times of washing, 100 μL of the conjugated bovine antibody was added to the mixture, and the mixture was incubated at 25°C for 30 min. After washing once again, 100 μL of substrate was added and the plate was incubated in a dark room at 25°C for 10 min. Finally, 100 μL of stop solution was added and the absorbance was read at 450 nm by an ELISA reader.

Culture

Initial isolation and MAP recultivation were performed using the Herrold egg culture medium containing mycobactin and without mycobactin, along with amphotericin B (5 mg), chloramphenicol (50 mg), and penicillin (100,000 units) [8]. The isolates were microscopically examined using the Ziehl–Neelsen (acid-fast) and fluorochrome methods.

Genomic DNA extraction

Bacterial DNA was extracted by Van Solingen’s method using CTAB, isoamyl alcohol, and chloroform. Two complete loops of bacterial colonies were taken from the surface of the Herrold egg medium and slowly transferred into a microtube containing 400 μL of TE buffer. The resultant suspension was kept at 85°C for 30 min to deactivate bacteria [8, 9].

To extract DNA, 50 μL lysozyme (10 mg/mL) was added to each microtube containing mycobacterium suspension and stored overnight at 37°C after vortexing. Thereafter, 110 μL of protease K and SDS 10% was added to each microtube, vortexed, and incubated overnight at 50°C. Afterwards, 100 μL of 5 M NaCl and 100 μL of CTAB/NaCl solution were added and vortexed until a milky white solution appeared. The solution was stored at 65°C for 10 min. Then, 750 μL isoamyl alcohol–chloroform (1:24) was added to each microtube and vortexed for 10 min and then centrifuged at 11000 g for 8 min at 25°C. A volume of 450 μL of cold isopropanol was added to the aqueous phase (containing DNA) and kept at -20°C for 30 min. The microtubes were centrifuged at 11000 g for 15 min at 25°C, and the supernatant was discarded. One milliliter of cold ethanol 70% was added, and the microtubes were vortexed several times. The solution was then centrifuged at 11000 g for 5 min at 25°C, and the supernatant was discarded. Next, 20 μL of TE buffer was poured on the DNA precipitates, and the DNA quantity and quality were examined by electrophoresis and nanodrop.

Identification of Mycobacterium by Nested-PCR
PCR

PCR was first performed for the 16S rRNA gene (confirming that the isolates belonged to the mycobacterium genus) with primers 5'ACGGTGGTACTAGGTTGGGTTTC3' and 5'TCTGCGATTTACTAGCGACTCCGACCTCA3'. After that, Nested PCR was performed using primers IS900 P90 (5'GTTCGGGGCCGTCGGTAGG3') and IS900 P91 (5'GAGGTCGATCGCCCACGTGA3'), confirming that the isolates were MAP. The product was used as a pattern for the subsequent PCR using primers IS900 AV1 (5'ATGTGGTGCTGTGGATGGTTGGTG3') and IS900 AV2 (5'CCGCGCGCTTACAGCTCCGACCTCA3'). The final PCR volume was set at 12.5 μL (Table 1). In addition to the positive and negative mycobacterium DNA samples, a distilled water microtube containing all PCR components except DNA was used as a negative control. The microtubes were then placed in a thermocycler, and the temperature program of PCR was set according to Table 2 [8-10]. Electrophoresis was performed using Red Safe pre-stained 1% MP agarose with a genetic marker size of 100 bp for 90 min at 2 V/cm.

Table 1. Thermal cycle conditions

<table>
<thead>
<tr>
<th>PCR reaction</th>
<th>Initial heating</th>
<th>Denaturation</th>
<th>Annealing</th>
<th>Extension</th>
<th>Final extension</th>
<th>No. of cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>16S rRNA</td>
<td>5 min, 94 °C</td>
<td>1 min, 94 °C</td>
<td>1 min, 60 °C</td>
<td>1 min, 72 °C</td>
<td>10 min, 72 °C</td>
<td>25</td>
</tr>
<tr>
<td>MAP1</td>
<td>5 min, 95 °C</td>
<td>1 min, 95 °C</td>
<td>90 sec, 58 °C</td>
<td>90 sec, 72 °C</td>
<td>10 min, 72 °C</td>
<td>35</td>
</tr>
<tr>
<td>MAP2</td>
<td>5 min, 95 °C</td>
<td>1 min, 95 °C</td>
<td>90 sec, 58 °C</td>
<td>90 sec, 72 °C</td>
<td>10 min, 72 °C</td>
<td>35</td>
</tr>
</tbody>
</table>

Table 2. PCR Materials

<table>
<thead>
<tr>
<th>PCR reaction</th>
<th>PCR buffer (µl)</th>
<th>dNTPs (µl)</th>
<th>MgCl2 (µl)</th>
<th>Primer forward (µl)</th>
<th>Primer reverse (µl)</th>
<th>DMSO (µl)</th>
<th>Taq polymerase (µl)</th>
<th>DNA template (µl)</th>
<th>PCR water (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16S rRNA</td>
<td>1.25</td>
<td>0.25</td>
<td>0.4</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>0.3</td>
<td>3</td>
<td>4.8</td>
</tr>
<tr>
<td>IS900 P</td>
<td>1.25</td>
<td>0.25</td>
<td>0.4</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>3</td>
<td>4.95</td>
</tr>
<tr>
<td>IS900 AV</td>
<td>1.25</td>
<td>0.25</td>
<td>1.25</td>
<td>0.4</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td>3</td>
<td>4.95</td>
</tr>
</tbody>
</table>

Authors’ Contributions

A.S. conceived and planned the experiments. M.S. carried out the experiments. M.S. and M.Sa. contributed to sample preparation. A.S. and M.Sa. contributed to the interpretation of the results. M.S. took the lead in writing the manuscript. All authors provided critical feedback and helped shape the research, analysis, and manuscript.

Acknowledgements

The authors of the article express their gratitude to the management and personnel of the tuberculin department of the Razi Vaccine and Serum Research Institute as well as the herd owners who provided the necessary help and cooperation to collect the samples for this study.

Conflict of interest

The authors declare that there is no conflict of interest.

References

5. Haghhkhah M, Ansari-Lari M, Novin-Baheran AM, Bahramy A. Herd-level prevalence of Mycobacterium avium subspecies paratuberculosis by bulk-tank milk PCR in Fars province

Identification of Mycobacterium by Nested-PCR

Soleimani et al., IJVST 2024; Vol.16, No.1
DOI:10.22067/ijvst.2023.83414.1280
Identification of *Mycobacterium* by Nested-PCR

Soleimani et al., IJVST 2024; Vol.16, No.1
DOI:10.22067/ijvst.2023.83414.1280
Effects of the Hydroalcoholic Extract of *Peganum harmala* Against the Venom of the Iranian *Snake* *Naja naja oxiana* in Mice

Behrooz Fathi

Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.

ABSTRACT

Peganum harmala contains pharmacologically active compounds and has been utilized for various purposes over the years. Due to public health concerns about snakebite envenoming, this study aimed to assess the potential antagonistic effects of this plant against the lethal impact of snake (*Naja naja oxiana*) venom. This study used five protocols and 56 adult albino mice in seven equal groups (A, B1, B2, C, D, E, and F). In protocol I (control), group A received only 4 mg/kg of venom, while groups B1 and B2 received the *P. harmala* extract at doses of 15 and 30 mg/kg, respectively. In protocol II, group C was simultaneously administered 15 mg/kg of the extract and 4 mg/kg of venom. In protocol III, group D received 4 mg/kg of venom, followed by the administration of 15 mg/kg of the extract after 20 min. In protocol IV, group E was treated with venom-extract pre-incubated for 20 min at the same doses. In protocol V, group F received 30 mg/kg of the extract orally 60 min before the injection of venom at 4 mg/kg. The route of injection was IP. The average time of death after venom injection was 31 ± 5 min. Groups B1 and B2 survived, while the animals in group C died after 29 ± 7 min, group D after 18 ± 4 min, group E after 17 ± 5 min, and group F after 22 ± 3 min. In conclusion, *P. harmala* does not protect against *Naja naja* venom and accelerates its lethal effect in an unknown way.

Keywords

Snakebite, *Peganum harmala*, *Naja naja oxiana*, Venom, Synergist

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP</td>
<td>Intraperitoneal</td>
</tr>
<tr>
<td>IV</td>
<td>Intravenously</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>LD50</td>
<td>Lethal dose 50%</td>
</tr>
<tr>
<td>LD100</td>
<td>Lethal dose 100%</td>
</tr>
<tr>
<td>PLA2</td>
<td>Phospholipase A2</td>
</tr>
<tr>
<td>MAO</td>
<td>Monoamine oxidase</td>
</tr>
</tbody>
</table>

Number of Figures: 2
Number of Tables: 1
Number of References: 40
Number of Pages: 9
Introduction

Snakebite envenomation is a global public health issue recognized by WHO, especially in tropical and subtropical regions. Over five million people are affected annually, resulting in 135,000 deaths. Survivors often face long-term disabilities, exceeding the fatality rate [1-3].

Iran, a temperate region, exhibits an impressive biodiversity with a notable presence of 81 snake species. Among these, 25 are venomous and hold significant medical importance. In a period spanning from 2002 to 2011, Iran witnessed a substantial number of reported snakebite incidents, which reached a staggering figure of 53,787 cases, resulting in 67 deaths.

The Caspian cobra (Naja naja oxiana) (Figure 1), belonging to the Elapidae family, is primarily found in the northeastern part of Iran, mainly in Khorasan province [4-7]. It is one of the most venomous snakes in Iran and in some neighboring countries. Its venom contains a highly potent neurotoxin with an exceptionally low LD50, making it more deadly than other cobra venoms. Studies have indicated that its LD50 is 10 μg/mouse when administered IV and recorded after 24 hours [8, 9]. Mortality due to Iranian cobra bites is 70%-75% if not treated, which is the highest rate among cobras, especially the Naja genus [10]. While N. n. oxiana is responsible for numerous fatal snakebites in Iran, the exact number of individuals envenomed by this snake has not been officially reported.

Antivenoms are considered the most conventional and effective treatment for venomous bites, as they can neutralize the toxins present in the venom and alleviate its effects. They play a crucial role in reducing the severity of envenomation, preventing complications, and promoting recovery.

However, it is important to acknowledge that antivenoms also have certain disadvantages. These include the risk of allergic reactions, such as early potentially life-threatening anaphylactic reactions and delayed reactions of the serum sickness type. Limited availability, high cost, specificity to particular types of venom, time limitations for administration, and the potential for other side effects should be noted [11-13]. Moreover, antivenoms have demonstrated limited efficacy in effectively treating the local destructive effects induced by venoms. Consequently, there exists a continuing and significant medical need pertaining to venomous bites and stings. It is paramount for scientists to persist in their endeavors to explore and develop more potent alternatives, as well as make advancements in the field of antivenom research.

In regions with a high frequency of snakebite incidence and limited access to medical facilities, the utilization of herbal medicines may be the only hope for saving the lives of victims [14, 15].

One illustrative example involves the employment of Indian Rauwolfia serpentina within traditional Ayurvedic medicine to address snakebite complications. Another notable plant is Andrographis paniculata, also known as the “King of Bitters,” which has a longstanding history in traditional medicine for its use in treating snakebites and venomous envenomation. Azadirachta indica, commonly referred to as Neem, can be topically applied to mitigate the swelling and inflammation triggered by snakebites. Aloe barbadensis, commonly recognized as aloe vera, offers pain alleviation and support in wound healing when applied topically to the site of snakebite. Moreover, Curcuma longa, also known as turmeric, possesses curcumin, which exhibits considerable anti-inflammatory and antioxidant properties that can facilitate wound healing by reducing inflammation when topically administered [16]. Certain traditional medicines, that contain natural PLA2 inhibitors, possess potent anti-snake venom properties. For instance, the ashwagandha plant (Withania somnifera) has been found to neutralize the venom of the speckled cobra (Naja naja) [17], and the leaf extract of Acalypha indica has been shown to have the potential to neutralize the venom of the Russell’s viper [18].

The scientific investigation of herbal antidotes for snake venom holds significant importance in the management of snakebites, while the effectiveness of this traditional treatment approach remains largely unproven in most cases.

Peganum harmala L. (P. harmala) (Figure 1), a perennial plant, is commonly known as Syrian Rue, harmala, or Espand in Iranian traditional folklore, and belongs to the family Zygophyllaceae [19]. While its primary origin is central Asia, it has scattered and now grows in various regions, including Australia, northern Africa, and southwestern America. P. harmala thrives in semiarid conditions similar to those found in Iran [20, 21].

Recent research has shown that P. harmala contains numerous phytoconstituents largely in its seed [22]. The bioactive alkaloids, including harmine, harmaline, harmol, vasicine, vasicinone, deoxyvasicine, and deoxyvasicine are responsible for their therapeutic functions, such as anticancer, antidiabetic, antimicrobial, anti-inflammatory, antiviral, antidiarrheal, antiemetic, antidepressant, anesthetic, and antioxidant properties, which have been vastly documented [23-25].

In Iran, the most popular traditional use of P. harmala seeds is as a disinfectant by burning the seeds and producing smoke through direct heat. While there are reports of individuals in various regions utilizing P. harmala to treat snake bites, these claims lack...
Results

Evaluation of Peganum Harmala extract for its antivenom activity

Protocol I, acute toxicity study

Prior to the main tests, several pilot studies were conducted to determine the LD100 of Naja naja oxiana venom in mice. Control groups, were including Group A, B1, and B2. In Group A, all mice were administered a dose of 4 mg/kg of *N. n. oxiana* venom alone and animals in group B1 and B2 received only the Peganum Harmala extract at doses of 15 mg/kg and 30 mg/kg, respectively. The mortality rate in group A was 100%, and the average time to death was 31 ± 5 minutes (Figure 2). Conversely, all mice in Groups B1 and B2, survived. This observation indicates a lack of toxic effects of the extract at the concentrations tested (Table 1).

Protocol II, the effect of Peganum Harmala extract were injected simultaneously with the venom of N. n. oxiana

All mice in Group C were treated with 15 mg/kg of Peganum Harmala extract along with 4 mg/kg of venom simultaneously. In this group, the mortality rate was 100%, and the average time to death was 29 ± 7 minutes. These values were not significantly different from the time to death of animals in Group A. (Figure 1) (Table 1).

Protocol III, the effect of Peganum Harmala extract were injected 20 min after the venom of N. n. oxiana

In this protocol, animals in Groups D received 15 mg/kg of Peganum Harmala extract, 20 minutes after being treated with 4 mg/kg of venom. The average time to death in Group D was 18 ± 4 minutes, which was significantly different from the time to death of animals in Group A (*p* < 0.001) (Figure 2) (Table 1).

Protocol IV, effect of a mixture of N. n. oxiana venom and Peganum Harmala extract

In this protocol, group E was treated with a mixture of 4 mg/kg of venom and 15 mg/kg of Peganum Harmala extract were incubated for 20 min. The average time to death in this group was 17 ± 5 minutes, which was significantly different from the time to death of animals in group A (*p* < 0.01) (Figure 2) (Table 1).

Protocol V, effect of oral administration Peganum Harmala extract against N. n. oxiana venom

In this protocol, group F was treated with 4 mg/kg of venom and 30 mg/kg of Peganum Harmala extract orally. The average time to death in group F was 22 ± 3 minutes, which was significantly different from the time to death of animals in group A (*p* < 0.01) (Figure 2) (Table 1).
other words, it has a synergistic effect on this venom. The results showed that the venom incubated with P. harmala extract does not have a protective effect and increases the speed of the deadly effect of the N. n. oxiana venom in an unknown way. In other words, it has a synergistic effect on this venom.

The N. n. oxiana venom exhibits neurotoxic properties and also possesses cytotoxic effects [26]. The inhibitory effect of cobra venom on nicotinic acetylcholine receptors results in the prevention of post-synaptic neurotransmitter connections, ultimately leading to respiratory muscle paralysis, particularly preventing the crucial function of the diaphragm, which clinically is the reason for victim death [27, 28].

P. harmala contains a variety of chemical compounds, including amino acids, such as phenylalanine, valine, histidine, and glutamic acid; flavonoids, such as coumarin, tannins, and sterols; and is rich in toxic alkaloids of the β-carboline type, such as Harmine, Harmaline, Harmol, and Harmalol [29-31]. In several studies on traditional herbal treatments, the toxicity and interactions of this plant have been identified [31]. Beta-carbolines bind to receptors, such as serotonin, muscarinic, histamine, and beta-adrenergic. Therefore, it seems that it cannot interfere with the blocking of acetylcholine receptors by venom. In other words, P. harmala extract does not have an inhibitory effect on specific receptors of active substances of N. n. oxiana venom.

According to a report, P. harmala has been associated with the clinical symptoms of intoxication. Animals experiencing intoxication exhibit various manifestations, including increased excitability, trembling, muscle stiffness, and an unsteady gait. Following a short narcotic state and heightened activity, animals may also encounter difficulties in breathing, mydriasis, hypothermia, and urinary problems [32, 33]. In severe cases, paralysis, depression of the central nervous system, dyspnea, and arterial hypotension have been observed. However, it is important to note that in this particular study, the administration of two different doses of P. harmala (15 and 30 mg/kg) did not result in any signs of intoxication. This lack of intoxication could potentially be attributed to the low concentration of P. harmala used in the study. The LD50 (lethal dose required to kill 50% of test subjects) of its alkaloid harmine in mice has been reported as 50 mg/kg [29]. Therefore, we assumed that the toxic effects of P. harmala, even at low doses, manifest by intensifying the toxic effect of cobra venom. Furthermore, previous studies have demonstrated that P. harmala seed extract possesses antispasmodic effects, inducing a myorelaxant effect on rabbit and guinea pig smooth muscles in vitro [29]. It is probable that the synergistic effect between P. harmala and N. n. oxiana venom, which accelerates the paralysis caused by the venom, is associated with these toxic activities.

The results showed that the venom incubated with the P. harmala extract (group E) kills the animals at a faster rate compared to the control group A and group C. It can be concluded that the P. harmala extract can react with the venom molecules and change the structure of these molecules so that they can react more easily to their receptors or more receptors are caught in an unknown way. However, such facilitation has been also observed in group D, in which the admin-

Table 1.
Application of different protocols and summary of the experiment results

<table>
<thead>
<tr>
<th>Protocols</th>
<th>NO of mice</th>
<th>Venom Mg/kg</th>
<th>P. Harmala Mg/kg</th>
<th>Average time to death</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8</td>
<td>4</td>
<td>-</td>
<td>31 ± 5</td>
</tr>
<tr>
<td>B1</td>
<td>8</td>
<td>-</td>
<td>15</td>
<td>Live</td>
</tr>
<tr>
<td>B2</td>
<td>8</td>
<td>-</td>
<td>30</td>
<td>Live</td>
</tr>
<tr>
<td>C</td>
<td>8</td>
<td>4</td>
<td>15</td>
<td>29 ± 7</td>
</tr>
<tr>
<td>D</td>
<td>8</td>
<td>4</td>
<td>15</td>
<td>18 ± 4</td>
</tr>
<tr>
<td>E</td>
<td>8</td>
<td>4</td>
<td>15</td>
<td>17 ± 5</td>
</tr>
<tr>
<td>F</td>
<td>8</td>
<td>4</td>
<td>30/orally</td>
<td>22 ± 3</td>
</tr>
</tbody>
</table>

Figure 2.
Time to death of mice after application of venom (V) and Peganum Harmala extract in different experimental protocols. Protocols: I (groups A): Only venom was injected at dose of 4 mg/kg (control). II (group C): Venom at 4 mg/kg and plant extract at 15 mg/kg have been injected simultaneously. III (group D): The plant extract has been injected 20 minutes after the venom injection at the pervious doses. IV (group E): Venom and plant extract have been incubated for 20 min prior to being injected at the pervious doses. V (group F) treated with venom at 4 mg/kg (ip) 60 minutes after administration of plant extract at 30 mg/kg orally. The level of significance considered was \(p < 0.05 \).
istration of extract and venom had a 20-min interval. Moreover, the time to death in group C, in which extract and venom were administered simultaneously, was very close to the control group. This may indicate that extract interaction is different in vitro and in vivo.

Other possibilities may help to explain this synergistic effect. *P. harmala* affects the cardiovascular system, reducing blood pressure that may accelerate the time to death of animals [34]. In severe cases, paralysis, CNS depression, dyspnea, hypothermia, and low blood pressure occur. Moreover, its notable alkaloids encompass beta-carbolines (e.g., harmaline, harman, harmalol, and harmine), as well as quinazoline derivatives (vasicine and vasicinone) that have mild hallucinogenic effects and are known for their ability to inhibit monoamine oxidase enzyme which breaks down certain neurotransmitters, namely serotonin, dopamine, and noradrenaline. Inhibiting MAO can lead to increased levels of these neurotransmitters, which can have various effects on the body [35-39].

Therefore, it is reasonable that the MAO-inhibiting properties of *P. harmala* may disrupt the metabolism of venom toxins. Such disruption has the potential to augment the concentration of toxins, thereby raising the severity and duration of venom-induced toxic effects. As a consequence, accelerated and intensified neurotoxic and cardiotoxic effects may occur within the organism. However, it should be noted that the interactions between MAO inhibitors and venom toxins can be complex and depend on multiple factors, including the specific venom toxins, concentration of MAO inhibitors, and the individual's physiological responsiveness. Regarding the route of administration, although it has been reported that the alkaloids of *P. harmala* are readily absorbed by the digestive system [32], the findings of the current study indicated no significant difference in the time of animal mortality when administering *P. harmala* extract orally or intraperitoneally.

Conclusion

The results of the present study indicated that the extract of *P. harmala* not only lacks a protective effect against *Naja naja* venom but also enhances the speed of the venom's lethal effect in an unknown manner. Although the extract alone had no toxic effect, interaction with venom exhibited a synergistic effect with the venom. The extract may increase the susceptibility of animals to this venom in an unclear way. These findings suggested that the plant extract has either a lower competitive ability with the neurotoxin or no competitive ability at all. Further investigation, particularly at the molecular level, is essential to enhance result clarity and gain a deeper understanding of the underlying mechanisms involved in these interactions.

Materials & Methods

Venom

The freeze-dried crude venom of *N. n. oxiana* was kindly provided by the Razi Vaccine and Serum Research Institute, Karaj, Iran. The Lyophilized venom was stored at 4°C and freshly prepared by dissolving it in a sterile physiological saline solution (0.9 % NaCl) to a final volume of 500 μl before injection into the animals.

Preparation of *P. harmala* extract

The fresh plant was harvested during early summer from agricultural fields located in the vicinity of Sabzevar city (36°12'45"N and 57°40'35"E) in the western region of Razavi Khorasan province, Iran. The plant specimen was precisely identified as *P. harmala* at the Ferdowsi University of Mashhad Herbarium (13613-FUMH). Subsequently, the plant material was subjected to drying in a dark room at a temperature of 28°C ± 4°C for two weeks. Following the drying process, the black seeds were carefully separated and finely ground into a powder. Methanolic extract of *P. harmala* was prepared in the Department of Pharmacognosy at the Pharmacy College of Ferdowski University of Mashhad.

A total of 100 g of powder was dissolved in 300 ml of 70% methanol and left to stand for 48 h. The solution was stirred for 30 min at room temperature and then filtered through Whatman filter paper no. 1. An additional 200 ml of methanol was added to the remaining mixture, and the process was repeated three times. The resulting solution was protected from light by placing it in an aluminum-covered glass container. Using a vacuum rotary evaporator (IKARV 10, Germany) set at 50°C and 60 rpm, methanol evaporated from the solution. The resulting solution was a highly viscous, dark red honey-like liquid. The solution was poured onto a plate and transferred to an oven for one week until it dried into a solid form. Afterwards, it was covered with aluminum foil and stored in a refrigerator at 4°C until use.

To dissolve the extract, we conducted tests using various solutions, including saline solution, a mixture of saline solution, and 2-3 drops of DMSO 0.01%. In addition, we employed diverse methods, such as heating, shaking, and centrifugation in attempts to dissolve the extract. However, none of these approaches yielded successful results. Ultimately, we achieved dissolution by using 2 normal HCL while adjusting pH to 7.5 with NaOH.

Animals

For this study, 56 adult albino mice of both sexes aged 8-10 weeks and weighing 28-40 g were purchased from the Animal House of Mashhad University of Medical Sciences. The animals were housed in the animal facility of the Faculty of Veterinary Medicine under controlled environmental conditions, including a 12:12 light-dark cycle, a temperature of 23°C ± 2°C, and a relative humidity of 55% ± 10%. They were kept in standard rodent cages and provided with food and water ad libitum. The experimental protocol was conducted following the guidelines of the Animal Ethics Committee of the Faculty of Veterinary Medicine, Ferdowsi University of Mashhad. The protocol was approved by this Ethics Committee with the code IR.U.M.REC.1401.171.

Experimental protocols

The ability of *P. Harmala* extract to antagonize the lethal effects of *N. n. oxiana* venom was investigated using five different protocols (I, II, III, IV, and V) (Table 1).

For this study, 56 mice were divided into seven equal groups (A, B1, B2, C, D, E, and F).

Peganum harmala Effect on *Naja naja oxiana* venom
In protocol I (controls), group A received *N. n. oxiana* venom only at a dose of 4 mg/kg and groups B1 and B2 received only *P. harmala* extract at the doses of 15 and 30 mg/kg, respectively. In protocol II, group C was treated simultaneously with 15 mg/kg of *P. harmala* extract, along with 4 mg/kg of venom. In protocol III, group D was treated with 15 mg/kg of *Peganum Harmala* extract, 20 min after the administration of *N. n. oxiana* venom at 4 mg/kg.

In protocol IV, group E was treated with the mixture of venom and *P. harmala* extract which was preincubated for 20 min at room temperature (26°C ± 2°C) prior to injection into animals. The route of administration in this study was IP.

It has been reported that the main route of administration for *P. harmala* is the oral route, as its alkaloids are well absorbed by the digestive system (Tahri et al., 2011). Therefore, in protocol VI, group F received the extract orally at a dose of 30 mg/kg after 24 h of food deprivation. After one hour, they received a dose of 4 mg/kg of venom. The survival time of each animal (in minutes) after the injection of venom, extract, and venom/extract was recorded and statistically compared with the control groups.

Statistical analysis

The data are presented as mean ± SEM and all the results were analyzed using SPSS-22 (SPSS Inc., Chicago, Illinois). One-way analysis of variance was used to analyze the data, followed by a post-hoc analysis using a Tukey test. The level of significance was considered \(p < 0.05 \).

Acknowledgements

We thank Razi Vaccine and Serum Research Institute, Tehran-Iran, for generously provided the Lyophilized crude venom of *Naja naja Oxiana*. We also thank Dr. Fatemeh Salami for statistical analysis.

Funding

This research has been financially supported by Ferdowsi University of Mashhad-Iran.

Conflict of interest

The authors declare that there is no conflict of the interest.

References

17. Lizano S, Domont G, Perales J. Natural phospholipase A2...

[Describe available supplemental material here, including brief legends for these materials, if applicable, for example Figure S1., Movie M1, …]
Large colon volvulus due to meconium impaction in a neonatal foal: a case report

Omid Azari, Seyed mahdi Ghamsari, Ali Roustaei, Omid Koohestani, Ahad Hassani

A 36 hours old foal was presented with abdominal pain and undecifcation that did not respond to medical treatment. Physical examination revealed marked abdominal distension, mild tachycardia, tachypnea and high rectal temperature. Radiographic and ultrasononographic investigations confirmed the meconium impaction and large colon involvement. The case was recommended for urgent exploratory celiotomy. Close observation during surgery showed distention of small and large intestine and 360° volvulus of left colon associated with meconium impaction in small colon. After decompression and correction of large colon, impacted meconium was removed from the lumen via small colon enterotomy. The foal was recovered uneventfully and did not show any complication during 2 weeks follow up. This report suggested failure to pass meconium can cause other gastrointestinal disorders in neonatal foals.

Keywords
Neonate foal, Meconium impaction, Colon volvulus, Colic pain

Abbreviations
LCV: large colon volvulus

Number of Figures: 2
Number of Tables: 0
Number of References: 20
Number of Pages: 7

Published online: 2024- Feb-01
DOI: 10.22067/ijvst.2023.83244.1276
Introduction

Colic is a prevalent condition in equine neonates, which is a significant concern due to vast differential diagnosis possibilities, management difficulty, and non-pathognomonic clinical signs[1]. Abdominal pain may be caused by gastrointestinal origin (e.g., impactions, gastric ulcer) or extra-gastrointestinal one (e.g., mesenteric abscess, ovarian tumor) [2]. Studies revealed that most foals’ gastrointestinal colic can be solved medically and will not require surgery[3]. Concurrent disorders, nonspecific clinical signs, and potential post-surgery medical problems, along with decreasing survival rate over time since the condition occurred, make the judgment intricate[1,3]. Surgical abdominal pains in foals are mainly associated with the small intestine. Large colon illnesses also include medical (Acute and chronic diarrhea) and surgical (obstruction). Large intestine obstructions are classified into simple, non-strangulating, and strangulating[1,4]. Meconium impaction is the simple and non-strangulating obstruction, and one of the most common causes of colic in equine neonates[5]. Retention of meconium may happen due to delayed ingestion of colostrum, dystocia, prematurity, low birth weight, birth asphyxia, and dehydration[6]. Impaction of meconium often resolved medically, and surgical intervention should be performed in unresponsive cases[6]. Large colon volvulus (LCV) and intussusception are strangulating obstructions, and both are reported rarely in neonate foals[1,4]. Despite the difficulty of making differentiating between surgical and medical therapy, foals with strangulating obstruction must be operated in the minimum time owing to the time-dependent success rate[3,4].

LCV usually begins rapidly and may lead to luminal obstruction and strangulating colic[4]. In this regard, neonates may show respiratory and cardiovascular signs, which can be helpful in diagnosis along with paraclinical evaluations. Generally, colon volvulus in horses with a degree exceeding 270° has a poor prognosis which even becomes lesser through time[7]. Many studies stated the fact that with faster referring and diagnostic processes and, eventually, operation, the survival rate will increase significantly[1,3,7].

In this case report, the clinical sign, diagnostic testing, and surgical findings of a 36 hours old neonate foal with a meconium retention followed by 360° large colon volvulus, will be described.

Case Presentation

A 36 hours old male thoroughbred neonate foal weighing 48 kg, was presented with signs of abdominal pain and failure to pass the meconium to the large animal veterinary hospital, University of Tehran. This case was referred to surgery after failure of medical therapy including enema by a veterinary practitioner. The colt demonstrated diminished appetite and was also letargic. No obvious abnormality had been found in the childbearing and gestation period. At the time of physical examination, the foal was alert and abdominal distension and moderate colic pain was evident. A digital examination of the rectum did not reveal meconium retention. On physical examination, the foal showed tachycardia (135 beats/min) and tachypnea (62 breaths/min), and high rectal temperature (40.2°C). Hematological examination revealed normal in red blood cell count (10.2×1012/L), hemoglobin concentration (125 g/L) and hematocrit (43%). White blood cell count mildly increased (12×109/L) with neutrophilia.

Standing Radiography projection showed marked gaseously distended intestinal loops in caudoventral and middle aspect of abdomen measuring 1.5 to 1.7 times of first lumbar vertebrae with meconium retention in distal colon (Figure 1.A). For further examination, transabdominal ultrasonography was performed when the foal was in the lateral position that revealed gas-fluid distended, hypomotile and circular appearance of large and small intestinal loops with normal wall thickness (Figure 1.B). A multiple hyperechoic immobile well-defined curved surface with dirty distal shadowing artifacts was prominent in the small colon represented the meconium impaction. Free fluid was not noted in the peritoneal or retroperitoneal cavities. Meconium impaction was the primary diagnosis and we did not correlate severe distention of intestinal loops observing in Ultrasonography and radiography with retention of meconium, so based on paraclinical findings, and because the meconium impaction did not respond to medical treatment, an emergency exploratory celiotomy was recommended that accepted by the owner.

Surgical Treatment

Intravenous catheters were placed in an aseptic fashion and sterile isotonic fluid (Sodium Chloride 0.9%, Intravenous Infusion) were given pre and intra-operatively (8mL/kg/h). The foal was pre-medicated with intravenous injection of flunixin meglumine (1.1 mg/kg BW) and Midazolam (0.1 mg/kg BW). Anaesthesia was induced using ketamine (2.2 mg/kg BW, IV) and maintained with isoflurane in medical oxygen on a semi-closed circle system. Then, the foal was positioned in dorsal recumbency and ventral surface of abdomen was prepared for aseptic surgery. A ventral midline incision (15 cm length) was created through the linea alba starting at the umbilicus and extending cranially.

Large colon volvulus due to meconium impaction in a neonatal foal
Initial exploration of abdominal cavity revealed marked distention of large colon. Also, mild non-specific small intestinal distension was present presumably due to the secondary ileus. The colon was decompressed of gas using an 18-gauge needle attached to a suction unit. Further exploration confirmed meconium impaction at distal region of small colon, and also 360° volvulus of left colons at the level of the sternal and diaphragmatic flexures (Figure 2). The twisted colon was corrected and the pelvic flexure was replaced in the correct orientation. Clinical evaluation of the colon including serosal colour, pulses in the ventral and dorsal colic arteries and colon motility showed that the tissue was alive. After that, the impaction of meconium was tried to break down by careful trans-luminal massage in combination with a warm water enema, but the attempt was unsuccessful and consequently, the enterotomy incision was performed in small colon and impacted meconium was removed. The enterotomy was closed in interrupted lembert pattern with 2–0 polyglactin 910 (Vicryl). The small intestinal contents were decompressed into the cecum, followed by decompression of both colon and cecum of free gas, using needle and suction unit. The abdominal viscera were copiously lavaged with warm normal saline and ventral midline incision was closed, routinely.

The foal recovered without any problem. Postoperative treatment included intravenous administration of 22000 IU/kg sodium benzylpenicillin QID, 6.6 mg/kg gentamicin SID and 1.1 mg/kg flunixin-meglumine SID, for 3 days. The foal discharged from the hospital, 3 days after the surgery. During two week follow up, the owner declared that the foal defecated normally and had good appetite.

Discussion

This study describes the clinical findings and surgical intervention of volvulus and meconium impaction occurring in 36 hours old foal. The simultaneous occurrence of these disorders is relatively rare in foals.

Among the colic origins, large colon volvulus have been reported rarely in foals[7]. Colon volvulus observed by Abutarbush et al. is the fourth most common cause of colic on presentation of adult hors-
es with an incidence of 7.3%[8]. In adult horses, LCV has an incidence of 10-21% among the surgical colics[9,10]. Large colon volvulus is 1st cause of euthanasia in surgical colics of mature horses. Mair and Smith (2005) revealed that volvulus is an important and killing condition, so initial recognition of this deadly disease is highly advisable [9]. Phillips and Walmsley (1993) reported that 53% of horses with surgical colic had a lesion of the large intestine of which one-third had LCV[11]. Although LCV is a common cause of surgical colic in adult horses, but less commonly reported in foals [12].

Vatistas et al. (1996) reported 5 foals among the 67 surgical colic had LCV[13]. In the study conducted by Adams et al. (1988) including 20 neonatal foals, torsion at the sternal and diaphragmatic flexures was observed in 3 foals[14]. In a review article of 119 abdominal surgery in foals, 5 foals had LCV, of which 4 patients were older than 3 months[15]. LCV was not reported in 137 neonate foals was reviewed in the University of Pennsylvania[3].

There are rare reports of LCV in 3 day-old neonates same as our report that the location of volvulus was the sternal and diaphragmatic flexures [1,12,14] reflecting these flexures may be a main site for LCV in neonatal foals. However, in adult horses, most of the volvulus occurs in cecal base or near the cecocolic fold because the colon region is freely movable in abdominal cavity and has a few attachments to the abdominal wall. Contributing factors for colonic motility is unknown in foals although differences in the morphology and density of myenteric plexuses between foals and adult horses have been reported and could influence colon motility pattern with animal age [1].

In a recent study concurrent large colon volvulus and atresia coli in 18 hours old foal was described and atresia coli result to hypoxia and inflammation may cause of LCV through the colon motility change [12]. A 360° LCV with meconium retention and intestinal incarceration has been described in 36 hours old colt [16]. We speculated that impaction in distal part of colon may cause of ileus and subsequently inflammation and vascular damage result in altered colon motility causing LCV.

Large-breed horses, post foaling, multiple colic episodes, feeding hey and restricted grazing are the risk factors for colonic volvulus in adult horses[12]. These factors are not contributed for the foals, but congenital malformation, undiagnosed colitis, abnormalities of the myenteric plexuses and intrauterine hypoxic injury to the colon put at foals to risk of LCV [1]. In the current patient, congenital malformation of the colon was not observed.

Due to small size of ponies and foals, transrectal palpation of the abdominal organs is out of the mind, and it is suggested that paraclinical examinations such as radiography and transcutaneous abdominal ultrasound be used to make a correct diagnosis. Radiography is a good diagnostic tool for distinguishing lesions of the large and small intestines and had a sensitivity of 96% for detecting gastrointestinal disease in foals and the width of enlarged intestinal loops was measured with the length of the first lumbar vertebral body[17]. In the current patient markedly distention of intestinal loops measuring 1.5 to 1.7 times the L1 body length vertebral showed obstruction caused by meconium impaction. For further evaluation, ultrasound was done and gaseous/liquid distention of the intestinal loops was noted and we did not speculate the LCV in this patient. Large colon volvulus diagnosis by transabdominal ultrasound in foals associated with difficulties reported by others [12,18]. However, Pease et al (2004) described that ultrasound finding in colon torsion in adult horses, including wall thickening in ventral site ≥9 mm, had a sensitivity of 67 % and a specificity of 100 % with high positive predictive value 100%, and also in another recent study marked large colon wall thickening proposed strangulated large intestine in neonatal foals [1,19]. It is suggested to measure colon wall thickening in colic foals that may support the colon strangulation, although no sign of wall thickening was observed in our ultrasound findings. Meconium impaction as described in the ultrasound of nonmoving sharp-edged particle in this report, close to description of sand impaction in adult horses, however, radiography is the gold standard for diagnosis of sand colic[20].

It is believed that survival rate in LCV surgery in horses depends on serosal colour of affected colon, degree of rotation and some laboratory and cardio-pulmonary parameters. In more reports about the LCV in foals, euthanasia is selected for patients as the vascular compromise of colon and serosal colour changes[1], although patient in our study has no sign of discoloration of strangulated colon and survived two weeks follow up.

In conclusion, according to the current case report, distention of colon due to the meconium impaction may increase the risk of colon displacement or volvulus in foals that it urgently needs to surgical intervention.

Authors’ Contributions
O.A and S.G performed surgery and manuscript writing. A.R and O.K performed paraclinical examinations, review literature and manuscript draft. A.H performed clinical examination and case follow-up.
CASE REPORT

Large colon volvulus due to meconium impaction in a neonatal foal

Acknowledgments

Many thanks to the technical staff of the large animal hospital of Veterinary Faculty of Tehran University.

Conflict of Interests

The authors declare that there is no conflict of interest.

References

Large colon volvulus due to meconium impaction in a neonatal foal

DOI: https://doi.org/10.22067/ijvst.2023.83244.1276
URL: https://ijvst.um.ac.ir/article_44563.html
علل حذف لاشه هاي طيور كشتاري در كشتارگاه هاي صنعتي نمين، استان اردبيل، ايران

آيدين عزيزپور،* زهرا اميرعجم

1 گروه گياهان داروی، دانشکده دامپزشکى، دانشگاه علوم پزشکى اردبيل، اردبيل، ايران.
2 گروه قلب، دانشکده پزشکى، دانشگاه علوم پزشکى اردبيل، اردبيل، ايران.

توليد گوشت طيور در سراسر جهان طي دو دهه گذشته در حال گسترش است. در اين راستا، بازرسى بهداشتى گوشت و پايش بيماريها در خط كشتار به عنوان يکى از راه های ازبین بردن و ضعف خاص در كشتارگاه صنعتي نمين، استان اردبيل بود. داده ها توسط بازرس دامپزشکى در كشتارگاه جمع آورى شد. تعداد طيور كشتار شده و وزن آنها و تعداد و وزن لاشه هاي حذف و همچنين دلایل مختلف ضبط لاشه ها ثبت شد. در این بررسى، ٦١٩٨٨٤٣ قطعه طيور كشتار شد و ٠١٣٢٤ لاشه (٢٠٢.١ درصد) با وزن ٥٨٣٦٦ كيلوگرم ضبط گرديد. بيشترين درصد ضبط لاشه ها در پايش (١٦/١ درصد) و كمترين آن در پايش (٠/٠٣ درصد) مشاهده شد. خسارت اقتصادي مستقيم ناشي از حذف لاشه ها تا ٧٦٠٣٥١ دالر برآورد شد. سپتى سمى و تلفات قيل گشتار (DOA) شايع ترين علل حذف لاشه ها بودند که به ترتيب ٦٦/٥ درصد و ٩٨/٥ درصد و كل كشتار را شامل شدند. بيشترين درصد ضبط ديلهياي لاشه هاي ضبطى ناشي از بيماريها در پايش اتفاق بود. در حالى كه تاپسانت بيشترين ميزان حذف را در ارتباط با DOA داشت، نتایج بررسى حاضر نشان داد كه بيشترين ضبط لاشه ها مربوط به بيماريها در مقایسه با سایر علل مي باشد. بنابراين، بهبود برنامه هاي كنترل بيماريها در گله ها و افزایش رفاه پرندگان قبل از كشتار توصيه مي شود.

* نويسنده مسئول: آيدين عزيزپور

Aidin_azizpour@uma.ac.ir

Causes for the carcass condemnations of the slaughtered poultry

Azizpour et al., IJVST 2024; Vol.16, No.1
DOI:10.22067/ijvst.2024.82675.1260

Received: 2023- Jun- 10
Accepted after revision: 2024- Jan-10
Published online: 2024- Feb-01
تغییرات تظاهرات بالینی لیشمیانوز جلدی در ظرفیت های مختلف آنتی اکسیدانی تام: یک مطالعه حیوانی با استفاده از موش‌های BALB/c

چکیده

شدت تظاهرات بالینی لیشمیانوز جلدی بستگی به عواملی مانند گونه لیشمیانیای درگیر، گونه میزبان و پاسخ ایمنی آنها می‌تواند متغیر باشد. انواع مختلف با هدف بررسی رابطه بین شدت علائم بالینی مختلف، تغییرات هیستوپاتولوژیک و شاخص‌های زننده با ظرفیت آنتی‌اکسیدانی تام در موش‌های آزمایشگاهی آلوده به لیشمیانوز مانند انجام شد. تعداد ۱۱۵ موش BALB/c حسب گروه در مدت ۷ هفته در ۷ گروه مختلفی (۵۱ موش در هر گروه) درمان شد. در هر گروه، سه گروه از ۴ گروه به صورت مختلف درمان گردیدند: ۱. گروه کنترل (۴ گروه)، ۲. گروه همراه با TRF-α، ۳. گروه همراه با TNF-α و ۴. گروه همراه با TNF-α و IFN-γ. در روز ۱۰، ۲۰، ۳۰، ۴۰، ۵۰ و ۶۰ پس از تثبیت درمان، اندازه‌گیری شد. نتایج نشان داد که تغییرات در علائم، ضایعات پوستی و شاخص‌های جدیدی در تعیین کیفیت و شدت تظاهرات بالینی لیشمیانوز جلدی به کمک عواملی مانند TRF-α و TNF-α در مدت زمان مشخصی ایجاد می‌شود.

واژگان کلیدی

نتایج بالینی، لیشمیانوز جلدی، ظرفیت آنتی‌اکسیدانی IFN-γ و TNF-α

نویسنده مسئول: سید موضوع ذوالحواره

mzolhavarieh@basu.ac.ir
برای توسعه روش الیزا بینان پروتئن نوترکیب P24 ویروس بورنا

چکیده

وسیله نرجس سادات، سحر خالوندرا، بهزاد رمضانی، مهدی حیبی انبوهی، فاطمه کاظمی لمعه

1 مرکز تحقیقات بیوتکنولوژی، آزمایشگاه ویروس و موکول‌های درمانی، انجمن پاستور ایران، تهران، ایران.
2 شرکت زیست فناوری گیور، تهران، ایران.
3 بانک سلولی ایران، انجمن پاستور ایران، تهران، ایران.
4 مرکز تحقیقات زئوژه‌پیوندی، انجمن پاستور، امل، ایران.

برای توسعه روش الیزا Borna-P2، پروتئین P24 بیومارکر RNA ویروس بورنا بنا (BDV) که پروتئین P24 را کد می‌کند، بنابراین نمونه‌های مورد بررسی ویروس BDV-P24 شناسایی شده است. در این مطالعه، با استفاده از الکتروفورز جل سدیم سولفات (pET22) سنتز پروتئین P24 با تکنیک کلونال و آنتی‌بادئی کلونال در خرگوش تزریق شد. الیزا پروتئین BDV-P24 از روش‌های سریع و میزان آلودگی کمی است. مایع P24 از روش الیزا برای تشخیص ویروس BDV برای تولید آنتی‌بادئی برای خرگوش بکر، با استفاده از الکتروفورز زل سدیم سولفات مورد بررسی قرار گرفت. نتایج نشان داد که روش الیزا برای تعیین ویروس BDV می‌تواند سریع و به‌طور مؤثر به‌پایه‌بندی پروتئین P24 با تکنیک کلونال برای استفاده در بانک جل سدیم سولفات در مورد بهبود کیفیت و کاهش نرخ آلودگی با در نظر گرفتن تمام موارد، مناسب باشد.

نویسنده مسئول: مهدی بهدانی
Behdani@pasteur.ac.ir
چکیده

با توجه به نقش استخوان‌های جمجمه در محافظت اندم‌های حیاتی بدن، معاونت دقیق این استخوان‌ها در شرایط مختلفی مانند آسیب‌های ناحیه سر ضروری است. حال اکثری در تخصص‌های رادیولوژی، آناتومی و پزشکی طبیعی استخوان‌های جمجمه در سگ‌های بالغ نژاد هاسکی هستند. این مطالعه شامل بررسی و مقایسه استخوان‌های جمجمه در سگ‌های بالغ نژاد هاسکی می‌باشد. در این مطالعه، هشت سگ بالغ نژاد هاسکی (چهار نر و چهار ماده) که به دلیل نیازمند اجتماع به بیماری ناحیه سر، به دکتری فوق‌العاده می‌پردازند، به عنوان نمونه‌برداری بررسی شدند. نتایج نشان داد که سگ‌های نژاد هاسکی بالغ از ۱۱ استخوان جمجمه و ۱۲ استخوان صورتی تشکیل شده‌اند. بررسی بیشتر سه پارامتر طول، عرض تیموپاسیف و اندازه‌گیری استخوان ارزیابی و بررسی می‌شود. نتایج نشان داد که پارامتر طول و عرض تیموپاسیف در جنس ماده کمتر شده و در جنس نر بیشتر شده‌اند. اختلاف دو پارامتر طول و عرض جمجمه در دو جنس معنادار گزارش شد (p ≤ ۰.۰۵). نتایج نشان داد که استخوان‌های جامد معنا گزینه‌ای برای استفاده در تشخیص و مقایسه نمونه‌های سالم و بیمار بوده و کاربرد آنها مورد استفاده قرار گرفته شده‌اند.

واژگان کلیدی
رادیولوژی، آناتومی، سگ، هاسکی، جمجمه

نویسنده مسئول: سیامک علی‌زاده
Si.alizadeh@iau.ac.ir
تعیین هویت مولکولی مايكوباكتريوم اوبوم زیرگونه پاراتوبركلوزيس جدا شده از نمونه‌های
Nested-PCR
الایزا مثبت توسط

چکیده

پاراتوبرکلوئیدس (بیماری بیوم) بیماری مزمن گرانولوماتوزی روده باریک تحت نام
MAP
ایجاد می‌شود. در کنترل بیماری، مهم‌ترین اقدام تشخیص و جداسازی حیوانات آلوده می‌باشد. لذا هدف این بررسی، شناسایی
MAP
مایکوباکتریوم اوبوم از نمونه‌های ارسالی با رویکرد
Nested-PCR
استخراج DNA
PCR-16S rRNA
و سپس از نمونه‌های مثبت
MA
2 نمونه مشکوک به دست آمد. در گسترش میکروسکوپی همه جدایی‌های مثبت در رنگ‌آمیزی زیل-نلسون باسلام مشاهده گردید.

به عنوان روش مناسب تشخیص سریع و قطعی موارد بیماری بیوماری پیشنهاد می‌گردد.

* نویسنده مسئول: علیرضا شهرجردی

drshahrjerdi@rvsri.ac.ir

واژگان کلیدی

مايكوباكتريوم اوبوم، بیماری بیوم
PCR-16S rRNA, Nested-PCR

References

Soleimani et al., IJVST 2024; Vol.16, No.1
DOI:10.22067/ijvst.2023.83414.1280
بررسی اثرات عصاره هیدروالکلی استنبد در مقابل زهر مار کبراى ایرانى "ناجا ناجا اکسیانا" در موش سوری

بهروز فتحى

گروه علم پایه، دانشکده دامپزشکى، دانشگاه فردوسى مشهد، مشهد، ایران.

چکیده

اسناد حاوی ترکیبات فعال دارویی است و در طول سال ها برای اهداف مختلف مورد استفاده قرار گرفته است. این مطالعه با هدف بررسی اثرات این گیاه در برابر تأثیر کشنده زهر مار کبراى ایرانى انجام شد. در این مطالعه از 5 پروتکل و 65 موش آلبو بالغ در بین گروه آ (کنترل) تنها 4 زهر، و گروه‌های A بین 15 و 60 میلگرام/کیلوگرم به همزمان در هر یک گروه B1 تزریق شدند. در پروتکل B2 و C، در هر یک گروه 30 و 15 میلی‌گرم/کیلوگرم عصاره و زهر به گروه D در گروه E، به گروه F و G در گروه H به همزمان کنار گذاشته شدند. در پروتکل I و J، عصاره به صورت مختلف و به همزمان در هر یک گروه تزریق شدند. دیگر تزریقات به روش تزریقات به صورت پوستی و به همزمان در هر یک گروه تزریق شدند. در نتیجه، استنبد در برابر زهر مار کبراى ایرانى نه تنها قدرت حفاظتی ندارد بلکه کننده آن را به روشی ناشناخته تسریع می‌کند.

واژگان کلیدی

مارکاربدگی، استنبد، مار کبراى ایرانى، زهر، هم افزایی

*نویسنده مستند: بهروز فتحى
b-fathi@um.ac.ir
چرخش کولون متعاقب انباشتگی مکونیوم در یک کره نوزاد: گزارش موردی

امید آذری۱، سید مهدی قمصري، علی روستایی، امید کوهستانی، احمد حسني، امید آذري۲

۱ گروه جراحی و رادیولوژی، دانشکده دامپزشکی، دانشگاه تهران، تهران، ایران.
۲ دانش آموخته دکترای حرفه ای، دانشکده دامپزشکی، دانشگاه تهران، تهران، ایران.
۳ دکترای حرفه ای دامپزشکی، دامپزشک طب اسب، استان تهران، تهران، ایران.

یک کره اسب، ۳۴ ساعت پس از تولد با علامت اولیه درد شکمی و عدم توانایی دفع که به درمان نیز نمی‌داده به بیمارستان ارجاع گردید. در طی معاینه، انسداد شکم، افزایش خفیف ضربان قلب، افزایش سرعت تنفس، دمای بالای رگتوپ مشخص شد. بررسی‌های رادیوگرافی و اولتراسونوگرافی انباشتگی مکونیوم و در گیری روده به روز روا تایید کرد. سپس سلیتوومی اکتشاف برای شکل وراثتی با بهره‌اتور محور و سطحی که گرفت. مشاهدات اولیه در طی عمل انسداد کولون کوچک را نشان داد. در طی بررسی چرخش ۳۴ درجه کولون چپ که همراه با انباشتگی مکونیوم در کولون کوچک بود کاملاً واضح شد. عملاً اصلاح وضعیت ناشی از نگرانی از طریق انتروتو می‌تواند در کولون کوچک مکونیوم انباشتگی شده، خارج گردد. کره اسب طی دو هفته بعد از جراحی تحت نظر قرار گرفت و در طول این مدت هیچگونه عارضه‌ای را نشان نداشت. این مطالعه نشان می‌دهد که عدم توانایی در دفع مکونیوم می‌تواند باعث مدل مشکلات گوارشی متعدد و تانوه گردد.

نویسنده مسئول: امید آذری
omid.azari@ut.ac.ir

Large colon volvulus due to meconium impaction in a neonatal foal.

DOI: 10.22067/ijvst.2023.83244.1276

Azari et al., IJVST 2024; Vol. 16, No. 1
Author Index

A
- Ahani, Saman 33
- Alizadeh, Siamak 33
- Amirajam, Zahra 1
- Azari, Omid 60
- Azizpour, Aidin 1

G
- Ghamsari, Seyed Mahdi 60

H
- Habibi-Anbouhi, Mahdi 27
- Handijatno, Didik 19
- Hassani, Ahad 60
- Hosseinchi, Mohammad Reza 33

F
- Fathi, Behrooz 52

K
- Kazemi-Lomedasht, Fatemeh 27
- Khalvand, Sahar 27
- Koohestani, Omid 60

M
- Maulana, Firdausy Kurnia 19

N
- Nourian, Alireza 10

R
- Ramezani, Behzad 27
- Rezvan, Hossein 10
- Roustaei, Ali 60

S
- Sadeghi-Nasab, Ali 27
- Salehi, Mitra 45
- Shahrjerdi, Alireza 45
- Soleimani, Mahsa 45

Y
- Yousefi, Mojtaba 10

Z
- Zolhavarieh, Seyed Masoud 10
SCOPE

Iranian Journal of Veterinary Science and Technology (IJVST) publishes important research advances in veterinary medicine and subject areas relevant to veterinary medicine including anatomy, physiology, pharmacology, bacteriology, biochemistry, biotechnology, food hygiene, public health, immunology, molecular biology, parasitology, pathology, virology, large and small animal medicine, poultry diseases, diseases of equine species, and aquaculture. Articles can comprise research findings in basic sciences, as well as applied veterinary findings and experimental studies and their impact on diagnosis, treatment, and prevention of diseases. IJVST publishes four kinds of manuscripts: Research Article, Review Article, Short Communication, and Case Report.
GENERAL GUIDELINES

1. Submitted manuscripts should not be previously published elsewhere and should not be under consideration by any other journal.
2. The corresponding author should provide all co-authors with information regarding the manuscript, and obtain their approval before submitting any revisions.
3. The submitted manuscript should be accompanied by a written statement signed by the corresponding author on behalf of all the authors that its publication has been approved by all co-authors, stating that the whole manuscript or a part of it has not been published.
4. Ethics: Authors must state that the protocol for the research project has been approved by the Ethics Committee of the institution within which the work was undertaken. Authors are responsible for animal welfare and all statements made in their work.

OPEN ACCESS POLICY

Iranian Journal of Veterinary Science and Technology is a fully Open Access journal in which all the articles are available Open Access. There is no cost to the reader or author. All costs are covered by the Ferdowsi University of Mashhad Press.

COPYRIGHT

Copyright on any open access article in the Iranian Journal of Veterinary Science and Technology, published by Ferdowsi University of Mashhad Press is retained by the author(s).
- Authors grant Ferdowsi University of Mashhad Press a license to publish the article and identify itself as the original publisher.
- Authors also grant any third party the right to use the article freely as long as its integrity is maintained and its original authors, citation details, and publisher are identified.
The Creative Commons Attribution License 4.0 formalizes these and other terms and conditions of publishing articles. The Copyright assignment form can be downloaded from the IJVST website.

SUBMISSION

Authors should submit their manuscript in electronic format directly through the IJVST website (ijvst.um.ac.ir) along with a letter to the editor signed by the author to whom correspondence should be addressed. Please ensure that Email addresses are university/governmental addresses and full postal addresses are included on the title page of the manuscript. The following files and forms can be downloaded from the IJVST website:
- Manuscript (template file can be downloaded from the IJVST website)
- Title page (template file can be downloaded from the IJVST website)
- Tables (template file can be downloaded from the IJVST website)
- Endnote manuscript library file (Vancouver style can be downloaded from the IJVST website)
PREPARATION OF MANUSCRIPT

Manuscripts should be written in English, with Abstract in both English and Persian (where applicable), typewritten in MS Word program, double-spaced, in 12-point “Times New Roman” font on A4 paper size. Authors are requested to reserve margins of 2.5 cm all around the pages. Manuscript should also have line numbers. All pages of the manuscripts should also be enumerated.

Research Articles should contain Title page, Abstract, Keywords, List of Abbreviations, Introduction, Results, Discussion, Materials and methods, References, and Figure legends. Tables and figures should be appended as individual files.

Review Articles should contain Title page, Abstract, Keywords, List of Abbreviations, Introduction, appropriate sections depending on the subject, Conclusions and future directions. Tables and figures should be appended as individual files. The review article should provide an update on recent advances in a particular field. Authors wishing to submit review articles should contact the Editor with an outline of the proposed paper prior to submission.

Case Reports should include Title page, Abstract, Keywords, List of Abbreviations, Introduction, Case Presentation, Results and Discussion, and References. Case reports should not exceed 2000 words (excluding the references) and should include no more than two tables or figures. Tables and figures should be appended as individual files.

Short Communications should not exceed 2000 words (excluding the references) and include no more than two tables or figures. They should include Title page, Abstract, Keywords, List of Abbreviations, the text summarizing results with no other divisions, and References. Tables and figures should be appended as individual files.

Title Page

Full Title Page should include title (concise and informative), author(s) (including the complete name, department affiliation, and institution), running head (condensed title) (≤ 50 characters, including spaces), name and address of the authors to whom correspondence and reprint requests
should be addressed, Acknowledgements, Author contributions, and Conflict of interest.

Acknowledgements: Personal acknowledgement, sources of financial support, contributions and helps of other researchers and everything that does not justify authorship should be mentioned in this section, if required.

Author contributions: Authors are required to include a statement to specify the contributions of each author. The statement describes the tasks of individual authors referred to by their initials. Listed below is an example of author contributions statement:
Conceived and designed the experiments: HD, SS. Performed the experiments: SS. Analyzed the data: HD, SS, MMM, ARB. Research space and equipment: HD, MMM, ARB. Contributed reagents/materials/analysis tools: HD. wrote the paper: SS, HD.

Conflict of interest: All authors must disclose any financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work. Examples of potential conflicts of interest include employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/registrations, and grants or other funding. If there are no conflicts of interest then please state ‘The authors declare that there is no conflict of interest’. This form can be downloaded from the IJVST website.

Abstract
Abstract (in English and Persian) no more than 250 words should contain the purpose of the study, findings and the conclusion made on the basis of the findings. Authors who are not native Persian speakers may submit their manuscript with an abstract in English only. Abbreviations and reference citations may not be used in the abstracts.

Keywords
For indexing purposes, each submitted manuscript should include three to seven keywords, following the abstract and preferably chosen from the Medical Subject Headings (MESH). Keywords should express the precise content of the manuscript.

Introduction
Introduction should be as concise as possible, and clearly explain the main objective and hypothesis of the investigation.

Results
Results indicate the results of an original research in a clear and logical sequence. Do not repeat data that are already covered in tables and illustrations. In manuscripts describing more than one animal, all animals should be assigned a case number.

Discussion
Discussion should include the answer to the question proposed in the introduction and empha-
size the new and important aspects of the study and the conclusions that follow from them. It could include the implication, application, or speculation of the findings and their limitations, relate the observations to other relevant studies, and links the conclusions with the goals of the study. Recommendations, when appropriate, may be included.

Materials and methods

Materials and methods should be described in sufficient details to allow other researchers to reproduce the results. Specify any statistical computer programs used. The methods of data collection and use of statistical analysis will be checked by the referees and if necessary, a statistician. Drugs and therapeutic agents, reagents, softwares and equipments should be given in the format: name (trade name, manufacturer name, city, country), e.g. Statview 5 (SAS Institute, Inc., Cary, NC, USA).

Animals: All animal experiments should comply with the ARRIVE (https://arriveguidelines.org/) guidelines and the authors should clearly indicate in the manuscript the ethical code of the study.

Gene names: The standard gene names, as provided by HGNC (HUGO Gene Nomenclature Committee) should be used. Gene names must be italicized. If the case of mammalian species and if gene names refer to rodent species, they must be upper case; if they refer to non-rodent species they must be written in capitals. If they refer to other species, they must written lower case. Protein names are written in capitals and are not italicized. As an example:

- Mouse beta actin gene: Actb
- Bovine beta actin gene: ACTB
- Chicken beta actin gene: actb
- Beta actin protein: ACTB

Quantitative PCR: If the quantitative PCR method has been used, the related section in Materials and Methods must be written following the reference:

The following information must be provided in the section:

- Protocol for DNA/RNA extraction, including quantification and determination of purity;
- Reverse transcription (if used): amount of RNA, concentration of all reagents; primers concentration (either random primers or oligonucleotides), reverse transcriptase and master mix components;
- qPCR: sequence of forward and reverse primers, probes, amplicon size, accession number of Genebank; thermocycler parameters (i.e. denaturation, annealing and extension steps, number of cycles, melting curves); validation of PCR products; non-template controls for reverse transcription and qPCR should be included in all reactions; and
- Data analysis: details for the quantitative or relative analysis.

Use of antibodies: Authors must show that the antibodies are validated and their specificity is con-
firmed.

References

Must be up-to-dated and limited to those that are necessary. Lists of references should be given in numerical order in the text, and in the reference list. Please use Vancouver style. To download the Vancouver Style follow the link in the IJVST website which could be used in the Endnote software.

Example piece of text and reference list:

An unhealthy diet, obesity and physical inactivity play a role in the onset of type 2 diabetes, but it has been shown that increased physical activity substantially reduces the risk [1], and participation in regular physical activity is one of the major recommendation of the evidence based guidelines for the primary prevention of diseases [2]. According to the 2004-05 National Health Survey, more than half a million Australians (3.5% of the population) have diabetes mellitus which had been medically diagnosed and most of these people have the Type 2 condition [3]. Gestational diabetes is also on the increase, rising steadily between 2000-01 and 2005-06 [4]. Approximately two thirds of those with diabetes have been prescribed medication [3], but it is of concern that a recent review of the literature found that many people do not take their medication as prescribed [5]. Many patients also self monitor the disease by measuring their blood glucose levels with a glucose meter but Song and Lipman [6] have concerns about how well this is managed.

References for the above example:

Tables

Please submit tables as individual files and editable text and not as images. Place all table notes below the table body. Each table should have a title which is followed by explanation of results shown in the table. Use of vertical rules must be avoided. Tables should be self-explanatory, and clearly arranged. Tables should provide easier understanding and not duplicate information already included in the text or figures. Each table should be typewritten with double spacing on a separate file and numbered in order of citation in the text with Arabic numerals. Each table should have a concise heading that makes it comprehensible without reference to the text of the article. Explain any non-standard abbreviations in a footnote to the table.

Figures

Figures must be submitted in individual files (format: TIFF, Dimensions: Width: 789 – 2250 pixels
GUIDE FOR AUTHORS

IRANIAN JOURNAL OF VETERINARY SCIENCE AND TECHNOLOGY

at 300 dpi Height maximum: 2625 pixels at 300 dpi, Resolution: 300 – 600 dpi, file size: less than 10 MB, Text within figures: Arial or Symbol font only in 8-12 point). The text and other labels should be placed in the figure as un-compressed layers. Each figure should have a title which is followed by explanation of results shown in the figure. Figures should be numbered in order of citation in the text with Arabic numerals.

For the use of bar diagrams the following publication should be consulted:

The bar diagrams should be provided in color and in a well-designed and professional format. Please do not use different shades of gray. The axes of diagrams should have titles and units. Also, the source file of the image (Excel etc.) should be provided for typesetting.

Illustrations should be numbered as cited in the sequential order in the text, with a legend at the end of the manuscript. Color photographs are accepted at no extra charge. The editors and publisher reserve the right to reject illustrations or figures based upon poor quality of submitted materials.

If a published figure is used, the publisher’s permission needs to be presented to the office, and the figure should be referenced in its legend.

Use of Italics
Gene symbols, Latin terms (i.e. in vivo, in vitro, ex vivo, in utero, in situ, and etc.) and species scientific names (using the binomial nomenclature), should be typed in italics, while the first letter of the genus name must be capitalized (i.e. Homo sapiens).
Publication Ethics

Irani Journal of Veterinary Science and Technology is aligned with COPE’s (Committee on Publication Ethics) best practice guidelines for dealing with ethical issues in journal publishing and adopts the COPE guidelines. The journal members (editor, editorial board and the journal manager) have agreed to meet the purposes and objectives of the Journal.

Ethical guidelines for authors:

Authorship Criteria

IJVST requires authors to confirm that they and their co-authors meet all four criteria for authorship based on the guidelines of The International Committee of Medical Journal Editors (ICMJE) (verbatim as follows):

1. Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND
2. Drafting the work or revising it critically for important intellectual content; AND
3. Final approval of the version to be published; AND
4. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

The section “Author Contributions” in the manuscript should illustrate and clarify who contributed to the work and how. If a contributor does not meet all four above criteria should be acknowledged in the “Acknowledgements” section of the article.

Author agreements and conflict of interest

Written authorization from all authors for publication of the article is mandatory for IJVST to start the review process. This form entitled “Conflict of interest declaration and author agreement form” must be signed and completed by all authors. This statement and signatures certifies that all authors have seen and approved the manuscript being submitted. Also, the authors by signing this form warrant that the article is the Authors’ original work, that the article has not received prior publication and is not under consideration for publication elsewhere, and that the corresponding author shall bear full responsibility for the submission.

Editors and members of editorial board as authors

Editor and members of editorial board are excluded from publication decisions when they are authors or have contributed to a manuscript.
Ethical guidelines for Peer reviewers

Iranian Journal of Veterinary Science and Technology (IJVST) follows and adheres to COPE Ethical Guidelines for Peer Reviewers. IJVST peer reviews all submitted manuscripts with contents in the scope of the journal. The process has been explained in the section “Peer Review Process”.

Ethical guidelines for Editor

Iranian Journal of Veterinary Science and Technology regarding the responsibilities of the editors follows and adheres to COPE Ethical Guidelines for editors. The main guidelines are summarized in the guide to ethical editing from COPE.
PEER REVIEW PROCESS

Iranian Journal of Veterinary Science and Technology peer reviews all submitted manuscripts with contents within the scope of the journal.

Initial assessment

The submitted manuscript will be subjected to a primary review by the editor or a member of the editorial board for suitability and relevance of the findings to the scope of the journal and quality of the science presented in the paper (sufficient originality, having a message that is important to the general field of Veterinary Medicine, quality of data, novelty, English language, and overall manuscript quality) within two weeks. If the paper is evaluated to be relevant to the scope of the journal and having enough scientific rigor and novelty, it will be sent for the next stage. Otherwise, those manuscripts which are evaluated as not-appropriate in the initial review will be rejected at this stage.

Initial screen

The initial screen will be performed by the editorial office for the structure and format of the manuscript.

Peer review (double-blind)

The manuscripts which are found to be appropriate after the initial screen will be sent for external review by experts in the related field. We have prepared a checklist for reviewers that summarizes their evaluation of the manuscript. The items in this checklist are:

1. TITLE is clear and adequate
2. ABSTRACT clearly presents objects, methods, and results.
3. INTRODUCTION well-structured and provides a rationale for the experiments described.
4. MATERIALS AND METHODS are sufficiently explained and is detailed enough to be reproduced.
5. RESULTS are clearly presented and supported by figures and tables.
6. DISCUSSION properly interprets the results and places the results into a larger research context, and contains all important references.
7. Conclusions are logically derived from the data presented.
8. English Language/style/grammar is clear, correct, and unambiguous.
9. Figures and tables are of good quality and well-designed and clearly illustrate the results of the study.
10. References are appropriate.
11. Regarding this article are you concerned about any issues relating to author misconduct such as plagiarism and un-ethical behavior.
12. Comments on the importance of the article.

Final Decision

Based on the reviewers’ recommendations a final decision is made by the editor and if needed the help of a member of the editorial board (depending on the field of study). Decisions will include accept, minor revision, major revision with and without re-review, and reject. We aim to reach a final decision on each manuscript as soon as their review results are available.