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This study evaluated whether intra-hippocampal administration of ABA can modulate learning 
and memory performance and oxidative stress biomarker activities in the cerebral cortex of rats 
exposed to rapid eye movement (REM) sleep deprivation. Adult male Wistar rats were cannulated 
in the CA1 area of the hippocampus. After recovery, the rats were subjected to REM sleep depri-
vation for 4 days. Then, the groups of REM sleep-deprived (SD) rats were treated with ABA (5, 
10, and 15 µg) and ABA (10 µg) + bicuculline (Bic), a competitive GABAA receptor antagonist. 
Memory and learning were evaluated with the Morris water maze (MWM) and shuttle box tests. 
Moreover, alterations in catalase levels as an antioxidant enzyme, MDA, and H2O2 as oxidant 
biomarkers were determined in rat brain cortex. REM SD rats indicated noteworthy learning and 
memory deficits in both the MWM and shuttle box tests when compared to control rats. However, 
intra-CA1 injection of ABA (10 µg) decreased cognitive impairment in REM SD rats. Bic (1 μg/rat) 
could not change ABA (10 µg) effects. In addition, an increase in catalase activity and a decrease in 
MDA and H2O2 were indicated in the brain cortex of ABA (10 µg) and ABA+ Bic treated groups. 
Overall, the data showed ABA's aptitude to attenuate REM sleep deprivation-induced learning and 
memory disruption and oxidative damage in rats. Manipulation of the GABAA receptor failed to 
inhibit ABA effects in REM SD rats.
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Introduction  

Sleep deprivation (SD) is a condition of inad-
equate sleep that can be considered a physio-

logical disorder or a result of an inappropriate lifestyle 
[1, 2]. Sleep quality has a significant impact on the 
regulation of other physiological processes, including 
learning and memory [3, 4]. It has been shown that 
SD disrupts memory retrieval and consolidation by 
changing hippocampus structural constancy [5]. The 
patterns of rhythmic brain waves in non-rapid eye 
movement sleep also show a relationship with hippo-
campal activities [6]. Hippocampal-mediated learn-
ing and memory, as well as neurotransmitters, are af-
fected by sleep quality [7, 8]. REM sleep deprivation 
could decline motor and sensory learning experiences 
in animals [9, 10]. 

Abscisic acid (ABA) is produced in all parts of 
plants and plays notable roles in their physiological 
functions, especially the regulation of stress respons-
es [11, 12]. ABA is synthesized from pro-vitamin A 
carotenoids [13], which are found in high concen-
trations in plants [12]. Moreover, in animals, ABA 
is found in various brain areas including the hippo-
campus, cerebral cortex, and cerebellum [14, 15]. 
ABA receptors are peroxisome proliferator-activated 
receptors (PPARs) and lanthionine synthetase C-like 
protein 2 [16, 17]. ABA signalling shows variation, 
but changes in calcium concentration and activation 
of cyclic ADP-ribose are the most mutual pathways 
[18-20]. 

ABA exerts modulatory effects on a variety of 
physiological functions including nociception, anxi-
ety and depression like behavior, sleep and learning 
and memory performances in rats [15, 21]. Central 
administration of ABA exhibited  analgesic effect 
which is facilitated by the PPAR β/δ and opioid sig-
nalling [22]. Moreover, ABA meaningfully improved 
the pentobarbital-related sub hypnotic effects and also 
endorsed sleep induction. Such effects showed depen-
dency with GABAA receptors and PPARβ/PPARγ sig-
nalling [23]. 

The main goal of the present study was to evalu-
ate if intra-hippocampal treatment of ABA can alter 
learning and memory performance in rats exposed to 
REM-SD. Moreover, bicuculline was used to assess the 
possible association of ABA with the GABA A recep-
tor. In a previous study, pretreatment with bicuculline 
was found to block ABA's ability to extend sleep du-
ration in a rat model of pentobarbital-induced sleep. 

Results  

Abbreviations-Cont'd
PPARs: Peroxisome proliferator-activated receptors 
ABA: Abscisic acid 
ROS: Reactive oxygen species 
CGRP: Calcitonin gene-related peptide

Bicuculline is a competitive GABAA receptor antago-
nist that blocks GABA's inhibitory effects by prevent-
ing chloride ion influx, leading to increased neuronal 
excitability and potential seizure activity[24]. The al-
teration of pro-oxidant/antioxidant biomarkers was 
also assessed in the cerebral cortex of SD rats. 

PA test 
The SD group showed an increase in the number 

of acquisition trials when compared with the control 
group (p < 0.001) (Fig. 1A). However, the number of 
acquisition trials was significantly decreased in SD 
groups post-treated with ABA (10 µg and 15 µg) (p 
< 0.001). No major alteration in acquisition trials was 
found in SD rats post-treated with Bic +ABA (10 µg) 
as compared to SD+ABA (10 µg) group. In addition, 
an increase in the step-through latency and a decline 
in time spent in the dark cavity were determined in 
the SD group (p < .001). ABA (10 µg) was able to in-
crease the step-through latency and decrease time 
spent in a dark chamber in SD rats (p < 0.001). In ad-
dition, no significant alteration was found in the SD 
rats' response infused with Bic + ABA (10 µg) as com-
pared with the ABA (10 µg) group (Fig. 1B and 1C).

Figure 1. 
The effect of intra-hippocampal administration of ABA (5, 10, 
and 15 µg/rat) or Bic+ABA (10 µg/rat) on the number of acquisi-
tion trials (A), step through latency (B), and time spent in a dark 
chamber (C) in passive avoidance test in SD rats. Values are ex-
pressed as mean ± SEM. * p < 0.05, ** p < 0.01, and *** p < 0.001 
versus control groups, # p < 0.05, ## p < 0.01, and ### p < 0.001 
versus SD group
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MWM test 
In acquisition trials, the latency time to catch the 

concealed platform was pointedly increased in the 
SD group in comparison to the control group (p < 
0.001). Intra-hippocampal infusion of ABA (10 µg /
rat) expressively decreased the latency time to catch 
the concealed stage in the SD rats (p < 0.01) (Fig. 2A). 
Moreover, SD+Bic+ABA (10 µg /rat) and SD+ ABA 
(10 µg /rat) treated groups show no change the latency 
to discover the hidden platform. Moreover, the groups 
showed major differences in space moved to touch the 
concealed platform on the acquisition test. As shown 
in Fig. 2B, the distance trekked to touch the hidden 
stage was meaningfully increased in the SD group (p 

< 0.001). Besides, the SD group treated with ABA (10 
µg/rat) traveled a lower distance to reach the hidden 
platform as compared to the SD group (p < 0.001). 
In the SD group injected with Bic+ ABA (10 µg/rat) 
the distance traveled to find the platform showed no 
difference as compared to the ABA (10 µg/rat) group 
(Fig. 2B).

Fig.3 indicates the results of the probe trial. The 
figure indicated that time spent and the traveled dis-
tance in the object zone significantly decreased in the 
SD group than the control group (p <0.001) (Fig. 3A). 
Moreover, ABA weakened the effects of SD on the time 
spent in the object area (p <0.05) (Fig. 3A). Further, 
ABA meaningfully improved distance traveled in the 

Figure 3
The effect of intra-hippocampal administration of ABA (5, 10, and 
15 µg/rat) or Bic+ABA (10 µg/rat) on the duration time (A), and 
distance travelled in target zone in SD rats in probe trial of MWM 
test. Values are expressed as mean ± SEM. ** p < 0.01 and *** p 
< 0.001 versus control groups, # p < 0.05, ## p < 0.01 versus SD 
group, && p < 0.05, &&& p < 0.001 versus SD + ABA (5 µg/rat) 
group, + p < 0.05   versus SD + ABA (10 µg/rat) group

object area in SD-treated rats (p < 0.01) (Fig. 3B). 
As notated in Fig. 3, SD rats infused with Bic + ABA 
show no significant difference in spent time and dis-
tance traveled in the target quadrat in comparison to 
ABA (10 µg/rat) group (p < 0.05). 

Biochemical assay
The activity of the antioxidant enzyme CAT was 

significantly decreased in the SD group when com-
pared with control rats. As shown in Fig. 4A, ABA at 
10 µg/rat and Bic+ABA (10 µg/rat) were able to in-
crease CAT activity in the SD group.  Moreover, there 
were significant increases in the activity of pro-oxi-
dant biomarker H2O2 and MDA concentration in the 
cerebral cortex of the SD group as compared to the 
control group. However, post-treatment of SD rats 
with ABA (10 µg/rat) or Bic+ABA significantly atten-
uated H2O2 activity and MDA level in the cerebral 
cortex (Fig. 4B and 4C). 

Figure 2. 
The effect of intra-hippocampal administration of ABA (5, 10, and 15 µg/rat) or Bic+ABA (10 µg/rat) on the escape latency 
time (A) and distance travelled to find the hidden platform in the MWM test in SD rats. Values are expressed as mean ± SEM. 
** p < 0.01 and *** p < 0.001 versus control groups, ### p < 0.001 versus SD group, &&& p < 0.001 versus SD + ABA (5 µg/rat) 
group, ++ p < 0.01, +++p < 0.001 versus SD + ABA (10 µg/rat) group
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Discussion  

The present study showed the deteriorating effects 
of REM sleep deprivation on the memory and learn-
ing performance of rats assessed in the MWM and 
shuttle box tests. However, intra-CA1 microinjection 
of ABA decreased SD-induced learning and memory 
deficiency in rats. Moreover, the sleep-deprived rats 

indicated a disruption in oxidant/antioxidant bio-
markers verified by a decrease in CAT activity and 
increases in lipid peroxidation and H2O2 production 
in the cerebral cortex, which was prevented by ABA 
(10 µg) treatment. The ABA effects in behavioral and 
biochemical experiments did not diminish with the 
GABA receptors antagonist bicuculline. 

The importance of sleep quality on cognitive per-
formance, especially hippocampal-depended learning 
and memory has been strongly supported by evidence 
from clinical and experimental studies [25]. In this 
study, the rats' learning and memory performances 
were assessed after a continuous 72 h period of REM 
SD. The 72-hour REM sleep deprivation period in rats 
reflects severe sleep loss but is not directly equivalent 
to 72 hours in humans due to differences in metab-
olism and sleep architecture. In humans, this time-
frame would likely correspond to several days of sig-
nificant sleep restriction or chronic sleep disruption 
rather than total sleep deprivation. Rodent models 
typically involve more intense and compressed sleep 
deprivation protocols compared to human studies. To 
bridge the gap between rodent and human studies, 
future research could explore the effects of varying 
durations of REM sleep deprivation in animal models 
and attempt to correlate these findings with human 
studies involving partial sleep restriction or chronic 
sleep fragmentation. Learning and memory changes 
following SD are highly dependent on the lasting du-
ration of the SD. In line with our result, most stud-
ies showed the highest detrimental effects of SD on 
memory performance when it lasted for 72 h.  Never-
theless, in some cases, shorter terms of SD lasting for 
24 or 48 hours have been associated with no alteration 
or even increases in hippocampal synaptic plasticity 
and memory impairment [26-28]. The mechanism(s) 
underlying different effects of SD lasting on learning 
and memory function are complex and still not well 
understood.

For the first time, this study shows ABA's ability 
to increase learning and memory performance in SD 
rats. The efficacy of ABA interventions on sleep, learn-
ing, and memory has been demonstrated in previous 
studies conducted on rodents. It has been indicated 
that ABA decreases onset time and prolongs sleep du-
ration in a rat model of pentobarbital-induced sleep 
[23].  Moreover, ABA treatment reduced learning and 
memory deficits in rat models of STZ-induced Alz-
heimer's disease [29]. In addition, ABA infusion de-
creased learning and memory deficits in MWM and 
shuttle box tasks in STZ diabetic rats[30]. The mecha-
nism(s) of ABA involvement to attenuate sleep depri-
vation weakening effects on learning and memory is 
not understood. It is postulated the effects might be 
intended by manipulation of related neurotransmit-

Figure 4.
The effect of intra-hippocampal administration of ABA (10 µg/
rat) or Bic+ABA (10 µg/rat) on the activity of CAT enzyme 
(A), MDA concentration (B) and H2O2 activity in the cerebral 
cortex of rats. Values are expressed as mean ± SEM. ** p <0.01 
and *** p <0.001 versus control groups, # p <0.05, ## p <0.01 
versus SD group, && p <0.05, &&& p <0.001 versus SD + ABA 
(5 µg/rat) group, + p <0.05 versus SD + ABA (10 µg/rat) group 
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ters and distinct neural networks within the brain. 
The data showed pharmacological blockage of 

the GABAA receptor with bicuculline did not inhibit 
ABA efficiency on learning and memory performanc-
es in sleep-deprived rats. In a related study, pretreat-
ment with bicuculline could obstruct ABA impending 
to prolong sleep duration in a rat model of pentobar-
bital-induced sleep [23]. This duality suggests that 
ABA could engage different pathways—supporting 
both sleep recovery and neurocognitive resilience—
depending on the physiological or experimental con-
ditions. 

GABAergic synapses are profoundly founded 
on hippocampus CA1 pyramidal neurons [31, 32]. 
While the baseline GABA levels in the hippocampus 
improve learning and memory performance, an in-
crease in GABAA receptor activity has been shown 
to decline network excitability and reduce synaptic 
plasticity in the CA1 area [33, 34]. Indeed, memory 
retrieval is impeded by the glutamate and GABA con-
centration balance in the brain [35]. In the rats sub-
jected to SD impairment of memory performance has 
been associated with imbalances in Glu/GABA ratio 
[36].  Although this study did not find ABA interfer-
ing with the GABAA receptor, however, more data are 
still required to describe the details of ABA's impact 
on the GABAergic system to modulate the learning 
and memory of SD-exposed rats.

In the present study, REM sleep deprivation in-
creased oxidative stress damage defined by increases 
in lipid peroxidation and H2O2 levels, and a decrease 
in CAT activity in the cerebral cortex of rats. How-
ever, post-treatment with ABA (10 µg/rat), which 
was the most effective dose to increase learning and 
memory behaviors, could inhibit oxidative stress im-
balances in SD rats. This data is supported by many 
previous studies that display ABA antioxidant capac-
ity in rodents. Oral treatment with ABA in drinking 
water increased antioxidant defence systems indices 
and decreased MDA levels  in many tissues of rats 
[37]. Moreover, intra-lateral ventricles infusion of 
ABA increased feeding behavior and increased the 
antioxidant enzymes activity, while  attenuated stress 
oxidative enzymes [38]. In a mouse model of thio-
acetamide-induced hepatic fibrosis ABA treatment 
decreased oxidative stress enlargements and inflam-
mation by induction of NF-кB signaling path [39]. In-
deed, this study data support an association between 
ABA antioxidant properties and reduction of REM-
SD induced learning and memory deficits.

It has been shown that as a isoprenoid plant hor-
mone compound, ABA binds to PPARs and activates 
several intracellular signaling molecules essential in 
the regulation of learning and memory performance 
[16]. Pretreatment with PPAR β/δ antagonist was able 

to suppress ABA anti-nociceptive effects in rats [16].  
Moreover, ABA decreased diabetes-induced learning 
and memory deficit in rats via intonation of PPARγ 
receptors [30]. In addition, PPARγ receptors antago-
nist prevented the ability of ABA to increase sleep du-
ration in a rat model of pentobarbital-induced sleep 
[23]. On the other hand, motivation of PPARγ recep-
tors with ABA modifies calcium channel activity and 
induces PI3K/PKC pathway in rat’s brain to modulate 
learning and memory and anxiety-like behavior [40]. 
Possibly ABA efficiency on learning and memory re-
sponses in SD rats is at least partially mediated by ma-
nipulations of the PPARs system and induction of the 
downstream signaling molecules involved in learning 
and memory performance. 

Our study primarily focused on learning and 
memory performance using specific behavioral tests 
(e.g., acquisition trials). While these tests provide 
valuable insights, they may not fully capture the 
broader spectrum of cognitive functions affected by 
sleep deprivation or ABA treatment. While oxidative 
stress biomarkers (catalase, MDA, H2O2) were evalu-
ated, other potential mechanisms (e.g., neuroinflam-
mation, synaptic plasticity) were not explored, leaving 
gaps in understanding ABA’s comprehensive effects.

Conclusions 
Overall, the data of this study showed the poten-

tial of intra-hippocampal administration of ABA to 
increase antioxidant indices in the brain and attenuate 
learning and memory deficits in RAM-SD rats.  Pre-
treatment infusion with GABAA receptors antagonist 
did not change ABA-induced responses.

Materials & Methods  
Animals
Adult male Wistar rats (2 months) weighing 230–270 grams were 
used in this study. The animals were contained four per cage in a 
room with a temperature of 23 ± 2 °C under a 12-h light/dark cycle 
with limitless entrance to food and water. All trial procedures were 
permitted by the Animal Research Ethics Committee of Kerman Uni-
versity of Medical Sciences, Kerman, Iran.

Surgery and microinjection 
Rats were profoundly anesthetized with a mixture of ketamine (100 
mg) and xylazine (5 mg) and placed in a stereotaxic apparatus (Es-
toelting  CO, USA).  Guide cannulae were bilaterally inserted in the 
CA1 region (3.8 mm posterior to the bregma, 2.2 mm lateral from 
the midline, and 3.2 mm depth to the cortical surface). Afterward, 
rats were kept separately and endorsed for 1 week to recover from 
surgery before treatments [41]. The drugs (1 μL each side) were de-
livered using a 27-gauge stainless steel needle devoted to a Hamilton 
micro-syringe. 

Experimental design
The animals were randomly separated into six experimental groups 
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