The Fabrication of a Biomedical Scaffold from Human Placenta

Document Type : Short communication

Authors

1 Department of Veterinary Surgery and Obstetrics, College of Veterinary Medicine, University of Kerbala,Kerbala, Iraq.

2 Department of Veterinary Surgery and Obstetrics, Collegeof Veterinary Medicine, University of Baghdad, Baghdad, Iraq.

Abstract

The powder derived from human placenta (HP) was successfully used in regenerative medicine. The purpose of this study was to fabricate powder from the human placenta and evaluate it by histological analysis, scanning electron microscopy, and X-ray diffraction. The placenta was decellularized chemically and then lyophilized by a lyophilizer (FTS Systems Bulk Freeze Dryer Model 8–54) for 24 hours at -56 °C and 5 mm Hg until they were totally dried. The assessment used histological analysis, Scanning Electron Microscopy, and x-ray diffraction. The hematoxylin and eosin stain demonstrated that cellular populations and nuclear residues were totally absent from HP tissue. The freeze-drying process of preparing acellular human placenta powder resulted in structures that are made up of highly interconnected, open networks of pores. The particle size mean diameter was approximately ranging from a minimum of 89.44 µm to a maximum of 172.82 µm, and the pore sizes ranged between 44.28 µm and 81.40 µm. Using conventional diffraction database cards, the X-ray diffraction analysis of acellular human placenta powder demonstrated the existence of the constituent organic and inorganic components. It was discovered that the presence of semi-crystalline or amorphous organic components, such as chondroitin sulfate, collagen, and hyaluronic acid. The study concluded from the structural powder that it can be used in regeneration treatments such as treating the spinal cord in animals.

Keywords

Main Subjects


1-Koob TJ, Lim JJ, Massee M, Zabek N, Rennert   R., Gurtner G,  Li WW. Angiogenic properties of dehydrated human amnion/chorion allografts: Therapeutic potential for soft tissue repair and regeneration. Vasc. Cell. 2014; 1:6:10. Doi:10.1186/2045-824X-6-10.
2-Mao Y, John N, Protzman NM, Kuehn A, Long D, Sivalenka   R,   Junka RA,  Gosiewska A, Hariri RJ,  Brigido SA. A decellularized flowable placental connective tissue matrix supports the cellular functions of human tenocytes in vitro. J. Exp. Orthop. 2022; 9: 69. Doi:10.1186/s40634-022-00509-4. 
3-Niknejad H,  Peirovi H,  Jorjani M,  Ahmadiani A, Ghanavi J,  Seifalian  AM. Properties of the amniotic membrane for potential use in tissue engineering. Eur. Cell Mater. 2008; 15, 88–99. Doi: 10.22203/ecm.v015a07. 
4-Mamede KM, Sant’anna LB. Antifibrotic effects of total or partial application of amniotic membrane in hepatic fibrosis. An.Acad. Bras. Cienc. 2019; 91(3): e20190220. Doi: 10.1590/0001-3765201920190220.
5-Gleason J, Guo X, Protzman NM,  Mao Y,  Kuehn  A,  Sivalenka  R,  Gosiewska  A,  Hariri R, Brigido SA. Decellularized and dehydrated human amniotic membrane in wound management: Modulation of macrophage differentiation and activation. J. Biotechnol. Biomater. 2022; 12:(8) 1000288. Doi:10.4172/2155-952X.1000289.
6-Warning JC, McCracken SA, Morris JM. A balancing act: Mechanisms by which the fetus avoids rejection by the maternal immune system. Reproduction 2011;141(6):715-724. Doi:10.1530/REP-10-0360.
7-Fénelon M, Catros S, Meyer C, Fricain JC, Obert L, Auber F, Louvrier A, Gindraux F. Applications of human amniotic membrane for tissue engineering. Membranes 2021; 11(6): 387. Doi:10.3390/membranes11060387.
8-Elkhenany H, El-Derby A,  Abd Elkodous  M,  Salah  R.A,  Lotfy  A,  El-Badri  N. Applications of the amniotic membrane in tissue engineering and regeneration: The hundred-year challenge. Stem Cell Res. Ther. 2022; 10;13(1):8. Doi:10.1186/s13287-021-02684-0.
9-Uchida S,  Inanaga Y,  Kobayashi M,  Hurukawa S,  Araie  M,  Sakuragawa  N. Neurotrophic function of conditioned medium from human amniotic epithelial cells. J. Neurosci. Res. 2000; 15:62(4):585-590. Doi:10.1002/1097-4547(20001115)62:4<585::AID-JNR13>3.0.CO;2-U. 
10-Moorefield EC, McKee E.E,  Solchaga  L,  Orlando  G,  Yoo JJ,  Walker S, Furth  M.E,  Bishop C.E. Cloned, CD117 selected human amniotic fluid stem cells are capable of modulating the immune response. PLoS ONE 2011; 6 (10): e26535. Doi:10.1371/journal.pone.0026535. 
11-Grzywocz Z,  Pius-Sadowska E,  Klos  P,  Gryzik  M,  Wasilewska  D,  Aleksandrowicz B, Dworczynska M,  Sabalinska S,  Hoser G,  Machalinski  B, et al. Growth factors and their receptors derived from human amniotic cells in vitro. Folia Histochem. Cytobiol. 2014; 52(3):163-170. Doi:10.5603/FHC.2014.0019.
12-Roy A, Mantay M, Brannan  C, Griffiths  S. Placental tissues as biomaterials in regenerative medicine. Biomed. Res. Int. 2022; 2022: 6751456. Doi:10.1155/2022/6751456. 
13-Bhatia M,   Pereira M, Rana  H,  Stout  B,  Lewis  C, Abramson  S,  Labazzo  K,  Ray  C,  Liu Q, Hofgartner W,  et al. The mechanism of cell interaction and response on decellularized human amniotic membrane: Implications in wound healing. Wounds 2007; 19(8):207-217.
14-Meyer FA, Laver-Rudich Z, Tanenbaum R. Evidence for mechanical coupling of glycoprotein microfibrils with collagen fibrils in Wharton’s jelly. Biochim. Biophys. Acta 1983; 22;755(3):376-387. Doi:10.1016/0304-4165(83)90241-6. 
15-Cheng HY. The impact of mesenchymal stem cell source on proliferation, differentiation, immunomodulation, and therapeutic efficacy. J. Stem Cell Res. Therapy 2014; 4:(10) 1–8. Doi:10.4172/2157-7633.1000237.
16-Hopkinson A, McIntosh RS, Tighe   PJ, James  DK, Dua HS. Amniotic membrane for ocular surface reconstruction: Donor variations and the effect of handling on TGF-beta content. Investig. Ophthalmol. Vis. Sci. 2006; 47(10):4316-4322. Doi:10.1167/iovs.05-1415.
17-Luna LG. Histopathologic methods and color atlas of special stains and tissue artifacts. Maryland: American Histolabs, Inc.1992
18-Moore DM, Reynold, R C. X-ray diffraction and the identification and analysis of clay minerals. 2nd Ed. Oxford University Press, New York. 1997; 135(6): 819-842.
19-Mahmood SK, Zakaria MZ, Yusof LM, Hammadi N I. Preparation and characterization of cockle shell aragonite nanocomposite porous 3D scaffolds for bone repair. Biochem. Biophy. Rep.2017; 23:10:237-251. Doi: 10.1016/j.bbrep.2017.04.008.
20-Harley BA, Kim HD, Zaman MH, Yannas IV, Gibson L J. Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions. Biophysical journal. 2008; 95(8): 4013-4024.Doi: 10.1529/biophysj.107.122598.   
21-AL-Ameri SHA, Al-Timmemi HAK. The Effectiveness of Extracellular Matrix Derived from Bovine Urinary Bladder Matrix on Spinal Cord Injury in Dog. IJONS 2018; 9(50): 976 – 97.
22-Bruzauskaite I, Bironaite  D,  Bagdonas  E, Bernotiene E. Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects. Cytotechnology.2016; 68(3): 355-369. Doi:10.1007/s10616-015-9895-4. 
23-Hausner T,  Schmidhammer R,  Zandieh  S,  Hopf  R,  Redl H. Nerve regeneration using tubular scaffolds from biodegradable polyurethane. Acta Neurochir Suppl. 2007; 18(6): 641-652. Doi: 10.1007/978-3-211-72958-8_15. 
24-Goldner JS, Bruder JM, Li G, Hoffman-Kim D. Neurite bridging across micropatterned grooves. Biomaterials. 2006; 27(3): 460-472. Doi:10.1016/j.biomaterials.2005.06.035. 
25-Sridharan R, Reilly RB, Buckley CT. Decellularized grafts with axially aligned channels for peripheral nerve regeneration J. Mech. Behav. Biomed. Mater .2015; 41, 124-135. Doi: 10.1016/j.jmbbm.2014.10.002.  
26-Kaizawa Y, Kakinoki R, Ikeguchi R. A nerve conduit containing a vascular bundle and implanted with bone marrow stromal cells and decellularized allogenic nerve matrix. Cell Transpl.2017; 26(2):215-228. Doi: 10.3727/096368916X692951. 
27-Mahdi AK, Al-Falahi NH, Nahi HH. Effects of chitosan and hyaluronic acid in healing of chemically induced oral ulcer in rabbits. KJVS. 20165; 7(2): 138-151. Doi:10.36326/kjvs/2016/v7i24331 
28-AL-Falahi N H A comparative biomechanical study of repaired tendons wrapped with two biological matrices in Bucks. Iraqi J. Vet. Med.2016: 40 (1): 73-78. Doi:10.30539/iraqijvm.v40i1.141. 
  29-Al-Falahi NH, Abood Dhyaa. Ab, Dauood MS. Comparative evaluation of bovine pericardial membrane and amniotic membrane in wounds skin healing in rabbits. Iraqi J. Vet. Med. 2017: 41(2):137-145. Doi: 10.30539/iraqijvm.v41i2.63.
30-AL-Bayati1 A H,  Al-Timmemi H,  AL-Mudallal NH. Role of acellular bovine urinary bladder submucosa on skin wound healing in Iraqi goats. Iraqi J. Vet. Med.2016; 40(1):53-60. Doi: 10.30539/iraqijvm.v40i1.138.
31-Al-ebadi A.K, AL-Bayati1 AH. Effect of the acellular bovine pericardium and urinary bladder submucosa matrixes in the reconstruction of ventro-lateral hernias in bucks; molecular evaluation. Iraqi J. Vet. Med.2019: 43(1):67–74. Doi: 10.30539/iraqijvm.v43i1.474. 
 32-Mahdi A.K, AL-Bayati1 AH. Evaluation of two biological matrices for repairing of ventral hernia in bucks. Iraqi J. Vet. Med.2018:42(2):21-32. Doi: 10.30539/iraqijvm.v42i2.282. 
33-Helal M, Hussein A. A clinical evaluation of micro and nano forms of magnesium oxide application on treatment of sciatic nerve injury. Biochemical & Cellular Archives 2021; 21:(2) ,3803.
34-Markides H, McLaren JS, Telling ND,  Alom N, Al-Mutheffer EA, et, al. Translation of remote control regenerative technologies for bone repair. npj Regenerative Medicine. 2018; 3:9  Doi:10.1038/s41536-018-0048-1.
35- Helal M, Hussein A. The Effect of Local Application of Magnesium Oxide Powder on the Blood Parameters During Nerve Regeneration of Injured Sciatic Nerve in Rat IJFMT. 2022; 16:( 1), 1759. Doi: ijfmt.v16i1.18065/10.37506.
CAPTCHA Image
Volume 16, Issue 4 - Serial Number 37
(This issue XML files are being prepared.)
December 2024
Pages 59-64
  • Receive Date: 02 June 2024
  • Revise Date: 15 October 2024
  • Accept Date: 10 October 2024