Histopathological assessment of wound healing after using adipose-tissue derived mesenchymal stem cells with Tragacanth gum hydrogel and human amniotic membrane as dressing

Document Type : Research Article

Authors

1 Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.

2 Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen’s University Belfast, Belfast, UK & Stem Cells and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Razavi Khorasan Branch, Mashhad, Iran.

3 Department of pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.

Abstract

Wound healing and finding a solution for fast healing are among of the major issues of today’s world. This study aimed to assess the effect of Tragacanth gum hydrogel as a three-dimensional scaffold of MSCs along with a wound dressing of human amniotic membrane in the healing of full-thickness skin wounds in rat. In this study, 54 Albino female rats (150 g) were divided into control, hydrogel, and hydrogel+stem cell groups. Under general anesthesia, two bilateral full-thickness wounds were created on the dorsal area by a 9.8-millimeter biopsy punch. Rats were euthanized on days 3, 10, and 21 for histopathology and cell tracking by PCR evaluation of tissue samples. The histopathological results showed that no significant difference was seen on days 3 and 21, and there were significant differences only on day 10. In terms of epithelialization, the treatment groups were significantly different from the control group  hydrogel+MSCs had a statistically significant difference with the control group in terms of granulation tissue formation. Cell tracking results with PCR on days 3, 10, and 21 in the hydrogel+MSCs group showed that MSCs were found only on day 3. The results of the present study showed that the use of stem cells together with the Tragacanth gum hydrogel as a scaffold and the use of human amniotic membrane as a dressing can cause fast healing of full-thickness wounds.

Graphical Abstract

Histopathological assessment of wound healing after using adipose-tissue derived mesenchymal stem cells with Tragacanth gum hydrogel and human amniotic membrane as dressing

Keywords

Main Subjects


1.    Hosseinzade S, Nourani H, Kazemi Mehrjerdi H, Lotfalizadeh N, Borji H. The effect of hydatid cyst protoscolex somatic antigens on full-thickness skin wound healing in mouse. Skin Res Technol. 2024;30(4):e13685. Doi: 10.1111/srt.13685. 
2.    Ghodrati Azad H, Fathi B, Kazemi Mehrjerdi H, Maleki M, Shaterzadeh H, Abyazi M. Macroscopic evaluation of wound healing activity of the Persian shallot, Allium hirtifolium in rat. Iranian Journal of Veterinary Science and Technology. 2011;3(1):31-8. Doi:10.22067/veterinary.v3i1.11878. 
3.    Miller W, Griffin C, Campbell K. Muller and Kirk’s Small Animal Dermatology. Elsevier Health Sciences; St. Louis; 2013. 
4.    Robson MC. Wound infection: a failure of wound healing caused by an imbalance of bacteria. Surgical Clinics of North America. 1997;77(3):637-50. Doi:10.1016/s0039-6109(05)70572-7.
5.    Bertone AL. Second-intention healing. Veterinary Clinics of North America: Equine Practice. 1989;5(3):539-50. In. Doi:10.1016/s0749-0739(17)30573-4.
6.    Sipp D, Turner L. US regulation of stem cells as medical products. Science. 2012;338(6112):1296-7. In. Doi:10.1126/science.1229918.
7.    Chen WC, Liu WF, Bai YY, Zhou YY, Zhang Y, Wang CM, Lin S, He HF. Transplantation of mesenchymal stem cells for spinal cord injury: A systematic review and network meta-analysis. Journal of translational medicine. 2021;19(1):1-4. Doi:10.1186/s12967-021-02843-0
8.    Mano J, Silva G, Azevedo HS, Malafaya P, Sousa R, et al. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. Journal of the royal society interface. 2007;4(17):999-1030. Doi:10.1098/rsif.2007.0220. 
9.    Rassouli A, Khanamani Falahatipour S, Hosseinzadeh Ardakani Y, Akbari Javar H, Kiani K, Zahraee Salehi T. Preparation and in vitro evaluation of chitosan-based films for the sustained delivery of enrofloxacin. Iranian Journal of Veterinary Science and Technology. 2018;10(1):13-20. Doi:10.22067/veterinary.v10i1.70288
10.    Zare EN, Makvandi P, Tay FR. Recent progress in the industrial and biomedical applications of tragacanth gum: A review. Carbohydrate polymers. 2019;212:450-67. Doi:10.1016/j.carbpol.2019.02.076. 
11.    Sahana T, Rekha P. A bioactive exopolysaccharide from marine bacteria Alteromonas sp. PRIM-28 and its role in cell proliferation and wound healing in vitro. International journal of biological macromolecules. 2019;131:10-8. Doi:10.1016/j.ijbiomac.2019.03.048. 
12.    Ranjbar-Mohammadi M, Bahrami SH. Electrospun curcumin loaded poly (ε-caprolactone)/gum tragacanth nanofibers for biomedical application. International journal of biological macromolecules. 2016;84:448-56. Doi:10.1016/j.ijbiomac.2015.12.024. 
13.    Bhowmick S, Koul V. Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: Synthesis, characterization and biological evaluation. Materials Science and Engineering: C. 2016;59:109-19. Doi:10.1016/j.msec.2015.10.003. 
14.    Jaiswal M, Koul V, Dinda AK. In vitro and in vivo investigational studies of a nanocomposite‐hydrogel‐based dressing with a silver‐coated chitosan wafer for full‐thickness skin wounds. Journal of Applied Polymer Science. 2016;133(21). Doi:10.1002/app.43472. 
15.    Niknia N, Kadkhodaee R. Factors affecting microstructure, physicochemical and textural properties of a novel Gum tragacanth-PVA blend cryogel. Carbohydrate polymers. 2017;155:475-82.Doi:10.1016/j.carbpol.2016.08.045. 
16.    Park KR, Nho YC. Synthesis of PVA/PVP hydrogels having two-layer by radiation and their physical properties. Radiation Physics and Chemistry. 2003;67(3-4):361-5. Doi:10.1016/S0969-806X(03)00067-7. 
17.    Jahani-Javanmardi A, Sirousazar M, Shaabani Y, Kheiri F. Egg white/poly (vinyl alcohol)/MMT nanocomposite hydrogels for wound dressing. Journal of Biomaterials science, Polymer edition. 2016;27(12):1262-76. Doi:10.1080/09205063.2016.1191825. 
18.    Yu S, Xu Y, Li Y, Xu B, Sun Q, et al. Construction of tissue engineered skin with human amniotic mesenchymal stem cells and human amniotic epithelial cells. Eur Rev Med Pharmacol Sci. 2015;19(23):4627-35. Doi:
19.    Mrugala A, Sui A, Plummer M, Altman I, Papineau E, et al. Amniotic membrane is a potential regenerative option for chronic non‐healing wounds: a report of five cases receiving dehydrated human amnion/chorion membrane allograft. International Wound Journal. 2016;13(4):485-92. Doi:10.1111/iwj.12458. 
20.    Sterodimas A, de Faria J, Nicaretta B, Pitanguy I. Tissue engineering with adipose-derived stem cells (ADSCs): current and future applications. Journal of Plastic, Reconstructive & Aesthetic Surgery. 2010;63(11):1886-92. Doi:10.1016/j.bjps.2009.10.028. 
21.    Huang S-P, Huang C-H, Shyu J-F, Lee H-S, Chen S-G, et al. Promotion of wound healing using adipose-derived stem cells in radiation ulcer of a rat model. Journal of Biomedical Science. 2013;20(1):1-10. Doi:10.1186%2F1423-0127-20-51. 
22.    Khademi B, Safari S, Mosleh-Shirazi MA, Mokhtari M, Chenari N, et al. Therapeutic effect of adipose-derived mesenchymal stem cells (ASCs) on radiation-induced skin damage in rats. Stem Cell Investigation. 2020;7. Doi:10.21037/sci-2019-045. 
23.    Karimi H, Soudmand A, Orouji Z, Taghiabadi E, Mousavi S. Burn wound healing with injection of adipose-derived stem cells: a mouse model study. Annals of burns and fire disasters. 2014;27(1):44.
24.    Lotfi M, Naderi‐Meshkin H, Mahdipour E, Mafinezhad A, Bagherzadeh R, et al. Adipose tissue‐derived mesenchymal stem cells and keratinocytes co‐culture on gelatin/chitosan/β‐glycerol phosphate nanoscaffold in skin regeneration. Cell Biology International. 2019;43(12):1365-78. Doi:10.1002/cbin.11119. 
25.    L Maranda E, Rodriguez-Menocal L, V Badiavas E. Role of mesenchymal stem cells in dermal repair in burns and diabetic wounds. Current stem cell research & therapy. 2017;12(1):61-70. Doi:10.2174/1574888x11666160714115926. 
26.    Hanson SE, Kleinbeck KR, Cantu D, Kim J, Bentz ML, et al. Local delivery of allogeneic bone marrow and adipose tissue‐derived mesenchymal stromal cells for cutaneous wound healing in a porcine model. Journal of Tissue Engineering and Regenerative Medicine. 2016;10(2):E90-E100. Doi:10.1002/term.1700. 
27.    Mogbel A, Hemmati AA, Agheli H, Amraee K, Rashidi I. The effect of tragacanth mucilage on the healing of full-thickness wound in rabbit. 2005. 
28.    Fayazzadeh E, Rahimpour S, Ahmadi SM, Farzampour S, Anvari MS, et al. Acceleration of skin wound healing with tragacanth (Astragalus) preparation: An experimental pilot study in rats. Acta Medica Iranica. 2014:3-8.  
29.    Mohammadi MR, Kargozar S, Bahrami S, Rabbani S. An excellent nanofibrous matrix based on gum tragacanth-poly (Є-caprolactone)-poly (vinyl alcohol) for application in diabetic wound healing. Polymer Degradation and Stability.2020;174:109105.Doi:10.1016/j.polymdegradstab.2020.109105. 
30.    Solomon A, Rosenblatt M, Monroy D, Ji Z, Pflugfelder SC, et al. Suppression of interleukin 1α and interleukin 1β in human limbal epithelial cells cultured on the amniotic membrane stromal matrix. British Journal of Ophthalmology. 2001;85(4):444-9. Doi:10.1136%2Fbjo.85.4.444. 
31.    John S, Kesting MR, Stoeckelhuber M, von Bomhard A. Evaluation of tissue-engineered skin on base of human amniotic membrane for wound healing. Plastic and Reconstructive Surgery Global Open. 2019;7(7). Doi:10.1097/gox.0000000000002320. 
32.    Joseph A, Dua HS, King AJ. Failure of amniotic membrane transplantation in the treatment of acute ocular burns. British Journal of Ophthalmology. 2001;85(9):1065-9. Doi:10.1136/bjo.85.9.1065. 
33.    Aghayan HR, Hosseini MS, Gholami M, Mohamadi-Jahani F, Tayanloo-Beik A, et al. Mesenchymal stem cells’ seeded amniotic membrane as a tissue-engineered dressing for wound healing. Drug Delivery and Translational Research. 2022:1-12. Doi:10.1007/s13346-021-00952-3. 
34.    Franck CL, Senegaglia AC, Leite LMB, de Moura SAB, Francisco NF, et al. Influence of adipose tissue-derived stem cells on the burn wound healing process. Stem cells international. 2019;2019. Doi:10.1155/2019/2340725. 
35.    Chen Y-W, Scutaru TT, Ghetu N, Carasevici E, Lupascu CD, et al. The effects of adipose-derived stem cell–differentiated adipocytes on skin burn wound healing in rats. Journal of Burn Care & Research. 2017;38(1):1-10. Doi:10.1097/bcr.0000000000000466. 
36.    Cheng H-Y, Ghetu N, Huang W-C, Wang Y-L, Wallace CG, et al. Syngeneic adipose-derived stem cells with short-term immunosuppression induce vascularized composite allotransplantation tolerance in rats. Cytotherapy. 2014;16(3):369-80. Doi:10.1016/j.jcyt.2013.06.020. 
37.    Irfan-Maqsood M, Matin M, Heirani-Tabasi A, Bahrami M, Naderi-Meshkin H, et al. Adipose derived mesenchymal stem cells express keratinocyte lineage markers in a co-culture model. Cellular and Molecular Biology. 2016;62(5):44-54. 
38.    Iranpour S, Mahdavi-Shahri N, Miri R, Hasanzadeh H, Bidkhori HR, et al. Supportive properties of basement membrane layer of human amniotic membrane enable development of tissue engineering applications. Cell and tissue banking. 2018;19:357-71. Doi:10.1007/s10561-017-9680-z. 
39.    Saghizadeh M, Winkler MA, Kramerov AA, Hemmati DM, Ghiam CA, et al. A simple alkaline method for decellularizing human amniotic membrane for cell culture. PloS one. 2013;8(11):e79632.Doi:10.1371/journal.pone.0079632. 
40.    Nussbaum EL, Mazzulli T, Pritzker KP, Las Heras F, Lilge L. Effects of Low Intensity Laser Light on Wound Healing in the Rat. InBiomedical Optics. 2008 (p. BWA4). Optica Publishing Group. Doi:10.1002/lsm.20769. 
41.    Kakinoki R, Bishop AT, Tu Y-K, Matsui N. Detection of the proliferated donor cells in bone grafts in rats, using a PCR for a Y-chromosome-specific gene. Journal of orthopaedic science. 2002;7(2):252-7. Doi:10.1007/s007760200042. 
 
CAPTCHA Image