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APR: Acute phase response
CRF: Corticotrophin-releasing factor 
LPS: Lipopolysaccharide 
COX2: Cyclooxygenase 2 
PG: Prostaglandin
EP4: Prostaglandin E2 receptor 4  
PVN: Paraventricular nucleus
ICV: Intracerebroventricular
IP: Intraperitoneal 

Anorexia is a part of the acute phase response (APR). Lipopolysaccharide (LPS) 
is frequently used to mimic APR and induces anorexia. Th e mechanism underlying 
anorexia associated with APR in chicks is not well understood. In the present study, 
the possible involvement of corticotrophin-releasing factor (CRF) on anorexic eff ects 
of LPS in neonatal chicks was investigated. For this aim, diff erent doses of LPS were 
administrated via both intracerebroventricular (ICV) and intraperitoneal (IP) routes 
in order to assess its eff ects on chick’s food intake. Subsequently, the eff ect of ICV 
injection of astressin, a CRF receptor antagonist, on anorexia induced by ICV and 
IP administration of LPS was investigated. Food intake was signifi cantly decreased 
following either central or systemic administration of LPS. ICV co -injection of as-
tressin and LPS signifi cantly diminished anorexic eff ects of central LPS. However, 
anorexia induced by peripheral LPS was not attenuated by central injection of as-
tressin. Th ese data indicated that the brain CRF receptors are involved in central 
LPS-induced anorexia in chicks.
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Introduction  

Energy homeostasis mechanisms are compli-
cated and also in part diff erent in animal spe-

cies, including birds (1, 2). Similar to mammals, under 
physiological conditions hypothalamic nuclei play a 
crucial role in chick energy homeostasis (3). Hypo-
thalamic homeostatic functions including appetitive 
and feeding behavior are extensively aff ected by im-
mune agents (4, 5). Indeed, infectious challenges ini-
tiate acute-phase response (APR), a systemic defense 
mechanism, which is commonly refl ected by immu-
nological, physiological, and behavioral disturbances 
(6, 7). Th e behavioral changes are known as “sickness 
behavior,” and are represented by depression, changes 
in motivational state, fever and the decrease in food 
intake namely illness anorexia (8). Lipopolysaccha-
ride (LPS), an endotoxin matter of cell surface of 
gram-negative bacteria, has been widely used as an 
experimental infl ammatory model for evaluation of 
possible underling mechanism(s) of anorexia in dif-
ferent species (9). LPS motivate expression of pro-in-
fl ammatory cytokines and anorexia-related agents, 
including corticotrophin-releasing factor (CRF) (10, 
11). CRF plays an important role in stress responses 
such as changes in the hypothalamic-pituitary-adre-
nal axis, autonomic nervous system, immune system- 
and behavior (12, 13). Th ese actions of CRF are medi-
ated through two receptor subtypes; CRF receptor 1 
(CRF1) and CRF receptor 2 (CRF2)(14) .

Several evidences have revealed inhibitory eff ects 
of CRF on food intake (15, 16). It has been shown that 
intracerebroventricular (ICV) administration of CRF 

inhibits food intake in both mammals and chicks (17, 
18). Saito et al (2005) indicated that the inhibitory ef-
fect of ghrelin on food intake was mediated by CRF in 
neonatal chicks (19). 

Besides reported anorexic eff ects of CRF, none is 
known about the CRF involvement in anorexic eff ects 
of LPS in birds. Th us, the present study was conducted 
to evaluate the eff ect of ICV injection of Astressin as a 
nonselective CRF receptor antagonist on anorexic ef-
fects of LPS in chicks. 

Results   

Food intake response to central LPS
Time-course of chick’s food intake injected ICV 

with diff erent doses of LPS is presented in Fig 1. Cu-
mulative food intake started to decrease the appetite 
of chicks treated with LPS (100 and 1000 ng) 30 min 
post injection and this suppression continued strong-
ly, so that chicks almost did not consume food until 
the end of the experiment. However, this suppression 
was statistically signifi cant form 120 min post injec-
tion and thereaft er. Th e central eff ects of astressin 
(20μg) and astressin co-injected with LPS (100 ng) 
on cumulative food intake of birds are represented in 
Figure 2. Food intake was not decreased by LPS plus 
astressin (except 240 min post injection), while it was 
signifi cantly decreased by LPS alone compared to the 
control 60 to 240 min aft er injection. Also, astressin 
or LPS plus astressin, signifi cantly increased food in-
take compared to the LPS group. All of these results 
show that anorexia induced by LPS is attenuated by 
the blockage of CRF receptors. 

Figure 1
Cumulative food intake following ICV injection of various doses of LPS in chicks. Values correspond to mean ± S.E.M. 
* p < 0.05 compared to control group  
# p < 0.05 compared to LPS 10 ng group
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Food intake response to peripheral LPS 
Figure 3 shows the cumulative food intake of 

birds’ injected IP with diff erent doses (10, 100 and 200 
μg) of LPS. Food intake tended to decrease by all lev-
els of LPS as a dose dependent manner. However, in 
chicks with 200 μg LPS, food intake was strongly sup-

pressed so that the birds did not eat nearly until the 
end of the experiment. However, this suppression was 
statistically signifi cant from 120 min post injection 
and thereaft er. Th e anorexia induced by IP injection 
of LPS was not attenuated by central astressin (both 
LPS and LPS plus astressin treated groups showed 
decreased food intake, while there was no signifi cant 

Figure 2
Cumulative food intake following ICV injection of LPS (100 ng) and LPS plus astressin (20 μg) in chicks. Values correspond to mean 
± S.E.M. 
* p < 0.05 compared to control group    
# p < 0.05 compared to LPS group

Figure 3
Cumulative food intake following IP injection of LPS in chicks. Values correspond to mean ± S.E.M. 
* p < 0.05 compared to control group
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diff erence between them)(Fig 4).

Discussion   

In this study we have hown that peripheral and 
central administration of LPS could strongly diminish 
the neonatal chicks’ food consumption. Th e anorexic 
eff ects were initiated 30 min aft er LPS injection and 
enlarged with increasing doses (Figs 1 and 3). LPS 
from gram-negative bacterial cell walls are major pro-
moters of the APR and reduced food intake  in an-
imals (20).  In mammals, many of the physiological 
eff ects of LPS via acting on its recognition receptor 
toll like receptor 4 are mediated by  pro-infl ammato-
ry cytokines, like interleukin (IL)-1, IL-6 and TNF-α 
which are released from activated cells of monocyte/
macrophage lineage (21-24). Th us, Pro-infl ammato-
ry cytokines are major endogenous mediators of the 
acute illness anorexia. Th ese cytokines activate cy-
clooxygenase 2 (COX2), an enzyme that facilitates 
the metabolism of arachidonic acid to prostaglandin 
(PG) E2 (25). In chickens, in agreement with our re-
sults, IP and ICV injections of LPS have been demon-
strated to induce hyperthermia and anorexia and to 
increase corticosterone (26, 27). PGs have also been 
demonstrated to be involved in LPS-induced hyper-
thermia and anorexia in chickens (27). Chickens were 

also injected with indomethacin (a COX2 inhibitor), 
peripherally or centrally following a challenge with 
IP injection of LPS. Pretreatment with indomethacin 
(injected IP but not ICV) signifi cantly attenuated the 
LPS-induced anorexia (27). In addition, intravenous 
injection of LPS has been reported to increase plas-
ma PGE2 concentrations in chickens (28). As it was 
mentioned before, we also investigated the eff ect of 
the blockade of CRF receptors by Astressin on anorex-
ia induced by LPS. Th e results showed that centrally 
(not peripherally) LPS-induced anorexia is attenuated 
when the CRF receptors are blocked (Figs 2 and 4). 
Consistent with this result, it has been demonstrated 
in chicks that IL-1 and 3 activate stress axis, the key 
pathway for prostaglandin-induced fever, sickness be-
havior, and anorexia (29-31). In mammals, both CRF 
and cortisol infl uence the central mechanisms in-
volved in the regulation of food intake (32). In chicks, 
several lines of evidence have shown that many an-
orectic agents exert their eff ects via CRF neurons. 
Indeed, the anorexigenic eff ects of ghrelin, glucagon 
like peptide -1, α-melanocyte stimulating hormone, 
vasoactive intestinal peptide, pituitary adenylate cy-
clase-activated peptide, glucagon, and cholecystokinin 
(19, 33-37), are  mediated by CRF. Although, mecha-
nisms underlying LPS induced anorexia mediated by 
CRF is unknown in chicks, there are some indications 

Figure 4
Cumulative food intake following IP injection of either 0 or 200 μg LPS followed by ICV injection of 0 or 20 μg Astressin 90 min later 
in chicks. Values correspond to mean ± S.E.M.
* p < 0.05 compared to control group
# p < 0.05 compared to Astressin group
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of this mechanism to be present in mammals. It has 
been reported that LPS induces the expression of CRF 
and prostaglandin E2 receptor 4 (EP4), and activates 
CRF neurons in the rat PVN (10, 38, 39). Pro-infl am-
matory cytokines may directly activate CRF neurons 
within PVN  (40). Peripheral injections of LPS or IL-1 
β increase COX-2 and microsomal Prostaglandin E 
synthase-1 expression in blood brain barrier endothe-
lial cells (41-43). PGE2 may directly act on its recep-
tors, EP4 within PVN to release CRF (44). Evidences 
indicate that PGE2 released in response to LPS (and 
probably pro-infl ammatory cytokines) may also act 
on serotonergic neurons to elicit anorexia. Th ese ev-
idences suggest that serotonergic neurons expressing 
EP3 receptors  might be activated by PGE2 and proj-
ect to areas of the hindbrain and forebrain that are in-
volved in the control of food intake (45, 46). Pre-treat-
ment with NS-398, a COX-2 inhibitor, reduced or 
eliminated LPS-induced c-Fos expression in several 
brain areas including the raphe complex,  a source of 
serotonergic neurons (47, 48). Serotonergic neurons 
via their 2C receptors may act on PVN to release CRF 
(48). Recently, Zendehdel et al reported that pre-treat-
ment with a 2C serotonin receptor antagonist signifi -
cantly attenuated food intake suppression caused by 
LPS in chickens (49). 

In this study, IP injection of LPS followed by ICV 
injection of Astressin couldn’t attenuate LPS-induced 
anorexia eff ects. Th is discrepancy may be attributed 
to the diff erence in peripheral and central pathways of 
LPS action. In agreement to this, Johnson et al showed 
that central injection of LPS increases corticosterone 
plasma levels more than peripheral LPS, indicating 
that more CRF is released by central LPS (26). 

In conclusion, current study revealed that both 
central and peripheral LPS strongly suppress food 
intake in chicks 30 min post injection and thereaft er. 
Th e required amount of LPS for central suppression 
was about 1000 times lower than that required for pe-
ripheral suppression. Our results also identifi ed that 
the CRF receptors are involved in the anorexic eff ect 
of central LPS in chicks.  CRF has been shown to be 
a food intake inhibitor in chicks and many anorexi-
genic factors act through the CRF pathway in chicks. 
However, further studies are needed to clarify the CRF 
receptor subtypes involved in the above mentioned 
pathway in chicks.

Material and methods      

Animals
One-day-old Ross broiler chicks were purchased from a local 

hatchery (Mahan Chicken Meat Production Complex, Kerman, 
Iran). All birds were given free access to a commercial feed and 
water and continuous lighting. Th e temperature and relative hu-

midity of the animal cage were maintained at 30 ± 1°C and 50 
± 5%, respectively. Animals were placed in individual cages, one 
day before the experiment. All eff orts were made to decrease dis-
tress. Th e principles of working with animals were based on the 
recommendations of the ethics committee of Kerman University 
of Medical Sciences, Kerman.

Drugs
LPS from Salmonella typhimurium (Sigma & Aldrich, USA) 

and Astressin (Tocris Bioscience, UK), a nonselective CRF antag-
onist,  dissolved in sterile 0.85% NaCl plus 0.1% Evance Blue (Sig-
ma & Aldrich, USA). Control animals received drug vehicle. All 
drugs were freshly prepared on each experimental day.

Microinjections
ICV injection was performed according to Davis et al. meth-

od (50). Briefl y, the head of the chick was inserted in a strain-
ing device which positioned a hole in a plate overlying the skull 
immediately over the right lateral ventricle. A microsyringe was 
then inserted into the right lateral ventricle through the hole and 
infusions were delivered in a total injection volume of 10μl. Th is 
method requires no anesthesia and stress level of birds is insignif-
icant (19, 51). At the end of each behavioral test, the animals were 
killed with intracardiac injection of sodium thiopental and their 
brain was removed. Validation of drug injection was verifi ed by 
the presence of Evans blue in the right lateral ventricle. If an in-
jection was not fi xed in the correct location, the chicks’ data were 
omitted from the analysis.

Experimental procedure
Th is study was designed in four experiments. In experiment 

1, chicks were given ICV injection of LPS at 0, 10, 100 and 1000 
ng.  Experiment 2 was conducted to determine the central eff ects 
of Astressin, as a CRF receptor antagonist, on LPS-induced change 
in chicks’ food intake. Th us, the birds received ICV injection of 
LPS at 0 and 100 ng, Astressin at 20 μg and Astressin (20 μg) plus 
LPS (100 ng). In experiment 3, animals were given an intraperi-
toneal (IP) injection of LPS at 0, 10, 100 and 200 μg. Experiment 
4 was similar to experiment 2 except that the chicks were given 
IP injection of either 0 or 200 μg LPS, then, 90 min later, they 
received ICV administration of either 0 or 20 μg Astressin.  In all 
experiments, 6-day-old chicks were deprived of food for 3 h prior 
to injections in order to motivate and coordinate feeding. Cumu-
lative food intake was measured at 30 to 240 min post injection. 9 
-12 chicks were used for each experimental group.

Data analysis
Data was presented as means ± SEM. Th e results were evalu-

ated statistically using ANOVA (IBM*SPSS statistics* version 23) 
followed by a post hoc Duncan’s new multiple rang test (MRT). 
Diff erences were considered statistically signifi cant when p ˂ 0.05. 
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 چکیده

واژگان کلیدى

نقش گیرنده فاکتور آزادکننده کورتیکوتروپین (CRF) بر اثرات بى اشتهایى القا 
شده با LPS در جوجه هاى نوزاد

 لیپوساکارید، بى اشتهایى عصبى حاد، گیرنده هاى فاکتور آزاد کننده کورتیکوتروپین، جوجه هاى نوزاد

حسین جنیدى1، مهدى عباس نژاد2، محدثه سلطان نژاد1، عبدالحمید شریفى مهر2، راضیه کوشکى2، منوچهر 
یوسفى2، مبین آقاپور2 

2018- Nov-08

2019- Jul- 27

2019- May-06

1گروه علوم پایه ، دانشکده دامپزشکى، دانشگاه شهید باهنر کرمان، کرمان، ایران
2گروه زیست شناسى، دانشکده علوم، دانشگاه شهید باهنر کرمان، کرمان، ایران

مى  استفاده   APR القا  و  تقلید  براى  متداول  شکل  به   (LPS) لیپوساکارید  است.   (APR) حاد  فاز  پاسخ  قسمت  یک  اشتهایى  بى 
آزادکننده  فاکتور  احتمالى  درگیرى  حاضر  مطالعه  در  است.  نشده  شناخته  جوجه  در   APR با  همراه  اشتهایى  بى  مکانیسم  شود. 
دوزهاى  هدف،  این  براى  گرفت.  قرار  مورد بررسى  هاى نوزاد  جوجه  در   LPS با  شده  القا  اشتهایى  اثرات بى  بر   (CRF)کورتیکوتروپین
متفاوت LPS به شکل مرکزى و محیطى براى بررسى آثار آن بر مصرف غذا توسط جوجه اعمال شد. سپس اثرات تزریق درون بطنى 
astressin به عنوان آنتاگونیست گیرنده CRF بر بى اشتهایى القا شده با LPS بررسى گردید. مصرف غذا به دنبال تزریق مرکزى و محیطى 

 CRF را کاهش دهد. نتایج حاضر نشان مى دهد گیرنده LPS توانست اثرات تزریق مرکزى astressin کاهش یافت. پیش درمان با LPS
در بى اشتهایى القا شده با LPS درگیر مى باشد.
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