Iranian Journal of Veterinary Received: 2018-Nov- 08
Accepted after revision: 2019- May- 06

SCienCC and TeChnOlogy Published online: 2019- Jul- 27

RESEARCH ARTICLE DOI: 10.22067/veterinary.v1il1.76494

Interactive effects of peripheral and central
administration of LPS with inhibition of CRF receptors
on food intake in neonatal chicks

b b
Hossein Jonaidﬁ Mehdi Abbasnejad, Mohadese Soltaninejaé, Abdolhamid Sharifimehr,

b b b
Razieh Kooshki, Manochehr Yosoufi, Mobin Aghapour

* Group of Basic Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
" Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran

ABSTRACT

Anorexia is a part of the acute phase response (APR). Lipopolysaccharide (LPS)
is frequently used to mimic APR and induces anorexia. The mechanism underlying
anorexia associated with APR in chicks is not well understood. In the present study,
the possible involvement of corticotrophin-releasing factor (CRF) on anorexic effects
of LPS in neonatal chicks was investigated. For this aim, different doses of LPS were
administrated via both intracerebroventricular (ICV) and intraperitoneal (IP) routes
in order to assess its effects on chick’s food intake. Subsequently, the effect of ICV
injection of astressin, a CRF receptor antagonist, on anorexia induced by ICV and
IP administration of LPS was investigated. Food intake was significantly decreased
following either central or systemic administration of LPS. ICV co -injection of as-
tressin and LPS significantly diminished anorexic effects of central LPS. However,
anorexia induced by peripheral LPS was not attenuated by central injection of as-
tressin. These data indicated that the brain CRF receptors are involved in central
LPS-induced anorexia in chicks.
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nergy homeostasis mechanisms are compli-
cated and also in part different in animal spe-
cies, including birds (1, 2). Similar to mammals, under
physiological conditions hypothalamic nuclei play a
crucial role in chick energy homeostasis (3). Hypo-
thalamic homeostatic functions including appetitive
and feeding behavior are extensively affected by im-
mune agents (4, 5). Indeed, infectious challenges ini-
tiate acute-phase response (APR), a systemic defense
mechanism, which is commonly reflected by immu-
nological, physiological, and behavioral disturbances
(6, 7). The behavioral changes are known as “sickness
behavior,” and are represented by depression, changes
in motivational state, fever and the decrease in food
intake namely illness anorexia (8). Lipopolysaccha-
ride (LPS), an endotoxin matter of cell surface of
gram-negative bacteria, has been widely used as an
experimental inflammatory model for evaluation of
possible underling mechanism(s) of anorexia in dif-
ferent species (9). LPS motivate expression of pro-in-
flammatory cytokines and anorexia-related agents,
including corticotrophin-releasing factor (CRF) (10,
11). CRF plays an important role in stress responses
such as changes in the hypothalamic-pituitary-adre-
nal axis, autonomic nervous system, immune system-
and behavior (12, 13). These actions of CRF are medi-
ated through two receptor subtypes; CRF receptor 1
(CRF1) and CREF receptor 2 (CRF2)(14) .
Several evidences have revealed inhibitory effects
of CRF on food intake (15, 16). It has been shown that
intracerebroventricular (ICV) administration of CRF
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inhibits food intake in both mammals and chicks (17,
18). Saito et al (2005) indicated that the inhibitory ef-
fect of ghrelin on food intake was mediated by CRF in
neonatal chicks (19).

Besides reported anorexic effects of CRE none is
known about the CRF involvement in anorexic effects
of LPS in birds. Thus, the present study was conducted
to evaluate the effect of ICV injection of Astressin as a
nonselective CRF receptor antagonist on anorexic ef-
fects of LPS in chicks.

Food intake response to central LPS

Time-course of chick’s food intake injected ICV
with different doses of LPS is presented in Fig 1. Cu-
mulative food intake started to decrease the appetite
of chicks treated with LPS (100 and 1000 ng) 30 min
post injection and this suppression continued strong-
ly, so that chicks almost did not consume food until
the end of the experiment. However, this suppression
was statistically significant form 120 min post injec-
tion and thereafter. The central effects of astressin
(20ug) and astressin co-injected with LPS (100 ng)
on cumulative food intake of birds are represented in
Figure 2. Food intake was not decreased by LPS plus
astressin (except 240 min post injection), while it was
significantly decreased by LPS alone compared to the
control 60 to 240 min after injection. Also, astressin
or LPS plus astressin, significantly increased food in-
take compared to the LPS group. All of these results
show that anorexia induced by LPS is attenuated by
the blockage of CRF receptors.
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Figure 1

Cumulative food intake following ICV injection of various doses of LPS in chicks. Values correspond to mean + S.E.M.

* p < 0.05 compared to control group
# p < 0.05 compared to LPS 10 ng group
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Figure 2

Cumulative food intake following ICV injection of LPS (100 ng) and LPS plus astressin (20 pg) in chicks. Values correspond to mean

+S.EM.
* p < 0.05 compared to control group
# p < 0.05 compared to LPS group
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Figure 3

Cumulative food intake following IP injection of LPS in chicks. Values correspond to mean + S.E.M.

* p < 0.05 compared to control group

Food intake response to peripheral LPS

Figure 3 shows the cumulative food intake of
birds’ injected IP with different doses (10, 100 and 200
ug) of LPS. Food intake tended to decrease by all lev-
els of LPS as a dose dependent manner. However, in
chicks with 200 ug LPS, food intake was strongly sup-
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pressed so that the birds did not eat nearly until the
end of the experiment. However, this suppression was
statistically significant from 120 min post injection
and thereafter. The anorexia induced by IP injection
of LPS was not attenuated by central astressin (both
LPS and LPS plus astressin treated groups showed
decreased food intake, while there was no significant
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Figure 4

Cumulative food intake following IP injection of either 0 or 200 pg LPS followed by ICV injection of 0 or 20 pg Astressin 90 min later

in chicks. Values correspond to mean + S.E.M.
* p < 0.05 compared to control group
# p < 0.05 compared to Astressin group

difference between them)(Fig 4).

Discussion

In this study we have hown that peripheral and
central administration of LPS could strongly diminish
the neonatal chicks’ food consumption. The anorexic
effects were initiated 30 min after LPS injection and
enlarged with increasing doses (Figs 1 and 3). LPS
from gram-negative bacterial cell walls are major pro-
moters of the APR and reduced food intake in an-
imals (20). In mammals, many of the physiological
effects of LPS via acting on its recognition receptor
toll like receptor 4 are mediated by pro-inflammato-
ry cytokines, like interleukin (IL)-1, IL-6 and TNF-a
which are released from activated cells of monocyte/
macrophage lineage (21-24). Thus, Pro-inflammato-
ry cytokines are major endogenous mediators of the
acute illness anorexia. These cytokines activate cy-
clooxygenase 2 (COX2), an enzyme that facilitates
the metabolism of arachidonic acid to prostaglandin
(PG) E2 (25). In chickens, in agreement with our re-
sults, IP and ICV injections of LPS have been demon-
strated to induce hyperthermia and anorexia and to
increase corticosterone (26, 27). PGs have also been
demonstrated to be involved in LPS-induced hyper-
thermia and anorexia in chickens (27). Chickens were

also injected with indomethacin (a COX2 inhibitor),
peripherally or centrally following a challenge with
IP injection of LPS. Pretreatment with indomethacin
(injected IP but not ICV) significantly attenuated the
LPS-induced anorexia (27). In addition, intravenous
injection of LPS has been reported to increase plas-
ma PGE2 concentrations in chickens (28). As it was
mentioned before, we also investigated the effect of
the blockade of CRF receptors by Astressin on anorex-
ia induced by LPS. The results showed that centrally
(not peripherally) LPS-induced anorexia is attenuated
when the CRF receptors are blocked (Figs 2 and 4).
Consistent with this result, it has been demonstrated
in chicks that IL-1 and 3 activate stress axis, the key
pathway for prostaglandin-induced fever, sickness be-
havior, and anorexia (29-31). In mammals, both CRF
and cortisol influence the central mechanisms in-
volved in the regulation of food intake (32). In chicks,
several lines of evidence have shown that many an-
orectic agents exert their effects via CRF neurons.
Indeed, the anorexigenic effects of ghrelin, glucagon
like peptide -1, a-melanocyte stimulating hormone,
vasoactive intestinal peptide, pituitary adenylate cy-
clase-activated peptide, glucagon, and cholecystokinin
(19, 33-37), are mediated by CRE. Although, mecha-
nisms underlying LPS induced anorexia mediated by
CRF is unknown in chicks, there are some indications
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of this mechanism to be present in mammals. It has
been reported that LPS induces the expression of CRF
and prostaglandin E2 receptor 4 (EP4), and activates
CRF neurons in the rat PVN (10, 38, 39). Pro-inflam-
matory cytokines may directly activate CRF neurons
within PVN (40). Peripheral injections of LPS or IL-1
B increase COX-2 and microsomal Prostaglandin E
synthase-1 expression in blood brain barrier endothe-
lial cells (41-43). PGE2 may directly act on its recep-
tors, EP4 within PVN to release CRF (44). Evidences
indicate that PGE2 released in response to LPS (and
probably pro-inflammatory cytokines) may also act
on serotonergic neurons to elicit anorexia. These ev-
idences suggest that serotonergic neurons expressing
EP3 receptors might be activated by PGE2 and proj-
ect to areas of the hindbrain and forebrain that are in-
volved in the control of food intake (45, 46). Pre-treat-
ment with NS-398, a COX-2 inhibitor, reduced or
eliminated LPS-induced c-Fos expression in several
brain areas including the raphe complex, a source of
serotonergic neurons (47, 48). Serotonergic neurons
via their 2C receptors may act on PVN to release CRF
(48). Recently, Zendehdel et al reported that pre-treat-
ment with a 2C serotonin receptor antagonist signifi-
cantly attenuated food intake suppression caused by
LPS in chickens (49).

In this study, IP injection of LPS followed by ICV
injection of Astressin couldn’t attenuate LPS-induced
anorexia effects. This discrepancy may be attributed
to the difference in peripheral and central pathways of
LPS action. In agreement to this, Johnson et al showed
that central injection of LPS increases corticosterone
plasma levels more than peripheral LPS, indicating
that more CREF is released by central LPS (26).

In conclusion, current study revealed that both
central and peripheral LPS strongly suppress food
intake in chicks 30 min post injection and thereafter.
The required amount of LPS for central suppression
was about 1000 times lower than that required for pe-
ripheral suppression. Our results also identified that
the CRF receptors are involved in the anorexic effect
of central LPS in chicks. CRF has been shown to be
a food intake inhibitor in chicks and many anorexi-
genic factors act through the CRF pathway in chicks.
However, further studies are needed to clarify the CRF
receptor subtypes involved in the above mentioned
pathway in chicks.

Material and methods

Animals

One-day-old Ross broiler chicks were purchased from a local
hatchery (Mahan Chicken Meat Production Complex, Kerman,
Iran). All birds were given free access to a commercial feed and
water and continuous lighting. The temperature and relative hu-
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midity of the animal cage were maintained at 30 + 1°C and 50
+ 5%, respectively. Animals were placed in individual cages, one
day before the experiment. All efforts were made to decrease dis-
tress. The principles of working with animals were based on the
recommendations of the ethics committee of Kerman University
of Medical Sciences, Kerman.

Drugs

LPS from Salmonella typhimurium (Sigma & Aldrich, USA)
and Astressin (Tocris Bioscience, UK), a nonselective CRF antag-
onist, dissolved in sterile 0.85% NaCl plus 0.1% Evance Blue (Sig-
ma & Aldrich, USA). Control animals received drug vehicle. All
drugs were freshly prepared on each experimental day.

Microinjections

ICV injection was performed according to Davis et al. meth-
od (50). Briefly, the head of the chick was inserted in a strain-
ing device which positioned a hole in a plate overlying the skull
immediately over the right lateral ventricle. A microsyringe was
then inserted into the right lateral ventricle through the hole and
infusions were delivered in a total injection volume of 10ul. This
method requires no anesthesia and stress level of birds is insignif-
icant (19, 51). At the end of each behavioral test, the animals were
killed with intracardiac injection of sodium thiopental and their
brain was removed. Validation of drug injection was verified by
the presence of Evans blue in the right lateral ventricle. If an in-
jection was not fixed in the correct location, the chicks’ data were
omitted from the analysis.

Experimental procedure

This study was designed in four experiments. In experiment
1, chicks were given ICV injection of LPS at 0, 10, 100 and 1000
ng. Experiment 2 was conducted to determine the central effects
of Astressin, as a CRF receptor antagonist, on LPS-induced change
in chicks” food intake. Thus, the birds received ICV injection of
LPS at 0 and 100 ng, Astressin at 20 pg and Astressin (20 pg) plus
LPS (100 ng). In experiment 3, animals were given an intraperi-
toneal (IP) injection of LPS at 0, 10, 100 and 200 pg. Experiment
4 was similar to experiment 2 except that the chicks were given
IP injection of either 0 or 200 pg LPS, then, 90 min later, they
received ICV administration of either 0 or 20 ug Astressin. In all
experiments, 6-day-old chicks were deprived of food for 3 h prior
to injections in order to motivate and coordinate feeding. Cumu-
lative food intake was measured at 30 to 240 min post injection. 9
-12 chicks were used for each experimental group.

Data analysis

Data was presented as means + SEM. The results were evalu-
ated statistically using ANOVA (IBM*SPSS statistics* version 23)
followed by a post hoc Duncan’s new multiple rang test (MRT).
Differences were considered statistically significant when p < 0.05.
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