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ABSTRACT
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Genotypic and Phenotypic Characteristics of the Phy-
logenetic Groups of Escherichia Coli Isolates From Os-
triches in Iran

Increased antibiotic use in the ostrich industry could lead to the emergence of virulent antibiotic-resistant 
bacterial strains transmissible to human. This study investigated the genotypic and phenotypic characteris-
tics of the phylogenetic groups of Escherichia coli (E. coli) isolates from ostrich and reveal their health risk 
potential. One hundred twenty-nine confirmed presumptive commensal (44) and suspected pathogenic 
(85) E. coli isolates from ostrich flocks in Mashhad, Northeast Iran, were phylo-typed by the Clermont 
quadruplex polymerase chain reaction. The phylogenetic profile of the isolates was comparatively investigat-
ed based on antimicrobial susceptibility, resistance, and virulence gene profiles. Results indicated that both 
groups of presumptive commensal and pathogenic isolates were mostly distributed within phylogroups A 
(with proportions 31.81% and 32.94%, respectively) and B1 (with proportions 36.36% and 31.76%, respec-
tively). Multi-drug resistance was highest within the phylogroup B2 (p ≥ 0.05). The phylogroup B1, typically 
known for commensal strains, unlike B2, showed the most negligible proportions of isolates which were 
devoid of resistance genes (p ≥ 0.05) and virulence genes (p ≥ 0.05). The findings of this study expanded the 
horizon of the genotypic and phenotypic characteristics of the phylogenetic groups of E. coli isolates from 
ostrich. Moreover, we indicated a complicated inconsistency between both characteristics. Therefore, more 
comprehensive and comparative studies on E. coli isolates from ostrich and human are favoured in future 
research.
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Characterization of E.coli isolated from ostrich

Introduction  

The presence of antimicrobial residues and the 
emergence of resistant bacterial pathogens in 

food and the environment have complicated the strat-
egies for appropriate treatment, raising serious public 
health concerns. In this sense, the improper or exten-
sive use of antimicrobials in food-producing animals, 
particularly poultry, for improving growth and health 
probably plays a significant part. This practice impos-
es a selection pressure, leading to resistant bacterial 
strains transmissible to human [1-5]. The emergence 
and dissemination of diversified phylogenetic groups 
of antibiotic-resistant E. coli strains is a global health 
concern. Furthermore, E. coli strains provide accurate 
findings on antimicrobial resistance status because of 
their presence in the environment and as commensal 
flora in humans and animals. Therefore, monitoring 
the phylogenetic distribution of E. coli strains could 
benefit the design of preventative and therapeu-
tic strategies with economic significance [6-8]. The 
phylogenetic background, indicating the ecological 
distribution, evolutionary history, and virulence of 
pathogens, could be affected by geographical region, 
sampling area, site of infection, antibiotic resistance, 
and host response. Environmental, social, and dietary 
conditions are also considered to cause phylogenic 
heterogeneity [9]. Most extra-intestinal pathogen-
ic E. coli strains belong to the previously described 
phylogroups. On the other hand, newly described 
phylogroups mostly include intestinal pathogenic E. 
coli strains. As a result, the phylotype-related traits 
necessitate a reliable detection of E. coli phylogroups 
and also the investigation of probable impacts of viru-
lence genes, MDR characteristics, and their cross-talk 
regarding each phylogroup [7, 10]. Finding the rela-
tionship between pathogenic traits and the phylogeny 
of E. coli is a complicated phenomenon due to distinc-
tive interplays [11]. However, some previous studies 
indicated that commensal E. coli strains are within 
phylogroups A and B1, while extra-intestinal patho-
genic E. coli strains belong to phylogroups D and B2. 
Moreover, E. coli strains within phylogroup B2, which 
have the highest susceptibility to antimicrobials, have 
previously exhibited promoted virulence capacity 
compared to commensal groups [12]. 

The APEC strain belongs to the ExPEC category 
[13]. Phylogenic backgrounds and virulence genes 
within the ExPEC strains from both human and avi-
an sources are identical [5]. Therefore, monitoring the 
ExPEC strains in poultry is crucial from the perspec-
tive of public health [14]. Comprehensive research 
has demonstrated that APEC and human ExPEC 
strains have multiple common traits, encompassing 
serogroups, virulence factors, and sequence types. In 
addition, the APEC strains might function as a res-

Distribution of Phylogenetic Groups Within Iso-
lates and in Relation to the Source of Isolation

Most isolates were segregated into five phyloge-
netic groups. However, 11.36% and 4.70% of the pre-
sumptive commensal and pathogenic strains were 
unassignable, respectively. The distribution of both 
groups of presumptive commensal and pathogenic 
strains was the highest in the B1 and A phylogroups. 
Commensal isolates were rarely classified into phy-
logroups B2 (0%) and C (2.27%). Details on phyloge-
netic classification results are demonstrated in Figure 
1. E. coli strains isolated from each source mostly be-
longed to the phylogroups A and B1, except that the 
strains isolated from the lungs were mainly within 
phylogroups A (42.85%) and E (42.85%). Those iso-
lated from dead-in-shell embryos were mostly within 
the phylogroups B2 (75%) and E (25%). Moreover, the 
isolates from the faeces of sick ostriches were abun-
dantly within phylogroups A (53.84%) and Unas-
signable (23.07%). Isolates from each source, except 
for the isolates from embryos, yolk sacs, and faeces of 
sick ostriches, possessed the lowest frequency within 
the phylogroups B2 and C. The strains within the Un-
assignable phylogroup were only isolated from faeces 
(of both healthy and sick birds; p ≥ 0.05) and yolk sacs 
(p ≥ 0.05). The strains within the phylogroup B2 were 
significantly isolated from dead-in-shell embryos (p < 
0.05). Details on the phylogenetic groups in relation 
to the source of isolation are presented in Figure 1. 

Result

ervoir for the virulence genes of ExPEC in humans. 
Therefore, for the effective surveillance and control of 
avian colibacillosis, it is vital to identify the phylogeny, 
lineage, and virulence of APEC strains that common-
ly infect poultry flocks. Early identification of these 
strains using phylogenetic analyses could beneficially 
provide the needed preventive measures [15, 16]. 

The ostrich farming industry is rapidly expand-
ing for the human consumption of meat, leather, and 
plumes. This industry plays an integral part in terms 
of agriculture, economy, and meat production in 
Iran. Scarce information on ostrich-originated E. coli 
strains, transmissible to humans, necessitates more at-
tention to the potential zoonosis health threats caused 
by these strains [17, 18]. To the best of our knowledge, 
this study is the first that comprehensively compared 
the phylogenetic profile of E. coli isolates from ostrich 
based on their genotypic and phenotypic traits. This 
study demonstrated some of the genotypic and phe-
notypic characteristics of the phylogenetic groups of 
E. coli isolates from ostrich, thereby revealing their 
potential health threats. 
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Figure1.
Distribution of phylogroups within the presumptive commensal and pathogenic E. coli isolates from ostrich and in relation to their 
source of isolation. Against categorical variables, P-value is ≥ 0.05 for each phylogroup, excluding one indicated by * (P-value < 0.05).

Antimicrobial Resistance Profile of Isolates and 
Phylogenetic Groups

Comparing the resistance of the pathogenic and 
commensal groups of isolates against four antimicro-
bials revealed a higher proportion of resistance for the 
earlier group against tetracycline (p ≥ 0.05); however, 
both groups of isolates showed a comparable propor-
tion of resistance against the other two tested antimi-
crobials, lincomycin (p ≥ 0.05) and ceftriaxone (p ≥ 
0.05). The distribution of antibiotic resistance within 
both groups of presumptive commensal and patho-
genic isolates was highest against lincomycin and 
tetracycline, respectively, and lowest against ceftriax-
one (Figure 2). Isolates from all phylogenetic groups 
harboured 100% resistance proportion against linco-
mycin. The isolates of the phylogroup C were entirely 
susceptible to streptomycin, trimethoprim + sulfame-
thoxazole, and doxycycline. Isolates of the phylogroup 
C also recorded no resistance against enrofloxacin 
and amoxicillin, similar to unassignable isolates. 
Isolates of C and B2 phylogroups showed complete 
susceptibility to florfenicol. While full susceptibility 
was recorded against ceftriaxone for isolates with-
in most phylogenetic groups, the isolates of C and E 
phylogroups showed 12.5% and 9.52% resistance to 
this antimicrobial, respectively (p ≥ 0.05). Resistance 
to gentamicin was also low within the isolates of all 

phylogroups, and only the isolates within phylogroups 
A, C, and E indicated a negligible resistance (4.76%, 
12.5%, and 4.76%, respectively) (p ≥ 0.05). Details 
on antimicrobial resistance frequency in relation to 
phylogeny are demonstrated in Figure 3a. Results 
also revealed that the highest total MDR proportion 
belonged to the phylogroup B2 (33%) (p ≥ 0.05) com-
pared to the MDR observed within the phylogroups A 
(10%), B1 (21%), C (0%), E (24%), and Unassignable 
(0%). More details on MDR frequency in relation to 
phylogeny are demonstrated in Figure 3b. 

Antimicrobial Resistance Gene and Virulence 
Gene Profiles of Phylogenetic Groups

Within phylogroups B2 and C, sul1 and tet(A) 
genes were undetectable. In addition, sul1 gene was 
absent within the Unassignable phylogroup (p ≥ 
0.05). Phylogroups B2 and C included the isolates 
devoid of blaTEM and qnrA gene, respectively. More 
than half of the isolates within the phylogroup B2 
(66.66%) lacked any resistance genes, which was the 
most abundant but was not significantly different 
(p≥ 0.05) compared to the corresponding rate of the 
phylogroup B1 (30.23%). Details on antimicrobial re-
sistance gene frequency in relation to phylogeny are 
demonstrated in Figure 4a. Within phylogroups C 
and Unassignable, astA and Irp2 genes were absent. 
Within the Unassignable phylogroup, iucD gene was 
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Figure 2.
Distribution of antibiotic resistance against three different antimicrobials within presumptive commensal and pathogenic E. coli iso-
lates from ostrich. P-value is ≥ 0.05 for each antimicrobial between categorical variables. 

Figure  3.
(a) Distribution of antibiotic resistance against 10 different antimicrobials within phylogroups of E. coli isolates from ostrich. P-value is 
≥ 0.05 for each antimicrobial against categorical variables. (b) Distribution of MDR within phylogroups of E. coli isolates from ostrich. 
Against categorical variables, P-value is ≥ 0.05 for each MDR, excluding one indicated by * (P-value < 0.05).
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Discussion
According to the phylotyping results of this study, 
most isolates were classified into five phylogenet-
ic groups; however, multiple strains were not as-
signable according to the quadruplex PCR-based 
method of Clermont et al. [19] (Figure 1). These 
unassignable strains have also been observed in 
some previous studies and are probably from ex-
tremely rare phylogroups. The loss of specific genes 
resulting from the plasticity of the genome of E. 
coli or the recombination of isolates from variant 
phylogroups might also lead to the observation of 
these unknown strains [19, 23, 24]. Phylogenetic 
groups B1 and A accounted for most of the phy-

Figure 4.
Distribution of antibiotic resistance genes (a) and virulence genes (b) within phylogroups of E. coli isolates from ostrich. tet(A), tetracy-
cline resistance gene; qnrA, quinolone resistance gene; sul1, sulfonamide resistance gene; aadA1, streptomycin resistance gene; aac(3)-
IV, aminoglycoside N(3)-acetyltransferase gene; blaTEM, beta-lactamase resistance gene; None (RGs), None resistance genes. P-value 
is ≥ 0.05 for each resistance gene against categorical variables. astA, enteroaggregative toxin gene; iss, increased serum survival protein 
gene; irp2, iron repressible protein gene; papC, P-fimbriae gene; iucD, aerobactin gene; tsh, temperature-sensitive hemagglutinin gene; 
vat, vacuolating autotransporter toxin gene; cvaA/B, colicin V plasmid operon gene; None (VGs), None virulence genes. Against cate-
gorical variables, P-value is ≥ 0.05 for each virulence gene, excluding two indicated by * (P-value < 0.05).

also undetectable. Within all phylogroups, excluding 
B1 (p < 0.05), tsh gene was rare. In addition, B1 was 
the only phylogroup carrying vat gene (2.32%) (p ≥ 
0.05). Only within the phylogroup B2, cvaA/B gene 
was undetectable (p ≥ 0.05), whereas this gene was 
significantly distributed within the phylogroup C (p < 
0.05). More than half of the isolates of phylogroup B2 

(66.66%) did not have any virulence genes, which was 
the most noticeable but did not have a significant dif-
ference (p ≥ 0.05) with the corresponding proportion 
of the phylogroup B1 (37.20%). Details on virulence 
gene frequency in relation to phylogeny are demon-
strated in Figure 4b. 

logenetic profiles of both groups of presumptive 
commensal and pathogenic isolates with a close 
distribution proportion (Figure 1). This finding is 
in line with multiple previous studies on E. coli 
strains originating either from ostrich [25] or 
other avian species [26-32]. However, some other 
studies reported different dominant phylogenetic 
groups within avian-originated E. coli strains [7, 
13-15, 33-36]. These inconsistencies could be due 
to the factors causing phylogenic heterogeneity, 
including geographical region, sampling area, site 
of infection, antibiotic resistance, host response, 
as well as environmental, social, and dietary con-
ditions [9]. However, regarding the results of this 
study, insufficient evidence was obtained to com-
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Materials and Methods
Sample collection 

From September 2018 to August 2019, a total of 44 presump-
tive commensal and 85 suspected pathogenic E. coli strains were 
randomly obtained from apparently healthy and sick ostriches, re-
spectively, from six distinct ostrich flocks in Mashhad, Northeast 
Iran. The presumptive commensal strains were sampled from the 
fresh faeces of apparently healthy ostriches, and suspected patho-
genic strains were sampled from the fresh faeces of sick diarrheic 
ostriches (n = 13), dead-in-shell embryos (n = 4) from ostrich-
es suspected to colibacillosis, and dead ostrich chicks (n = 68). 
These chicks were suspected to be infected with E. coli through 
post-mortem examination and samples from their infected or-
gans, including yolk sac (n = 16), lung (n = 7), liver (n = 23), and 
heart (n = 22), were aseptically taken.  

Isolation and Detection of E. coli Strains
All obtained samples were aseptically streaked on MacConkey 

agar and aerobically incubated at 37°C for 24 h in the laboratory at 
the Veterinary Teaching Hospital, Ferdowsi University of Mash-
had, Iran. The pure bacterial colonies with morphological and 
Gram staining characteristics similar to E. coli underwent bio-
chemical tests (Indol, MR-VP, Simon Citrate, and TSI) and were 
confirmed as E. coli strains. Pure colonies of each sample were 
stored at -20°C in microtubes containing 2 ml of BHI medium 
and 15% sterile glycerol until use [37].

DNA Extraction 
Following thawing, E. coli isolates were cultured on MacCon-

key agar and were then incubated at 37°C for 24 h. Subsequently, a 
pure colony of each cultured isolate was suspended in a microtube 
containing 150 μl sterile distilled water. Extraction of the whole 
bacterial genome was performed through the rapid boiling meth-
od on the mixture [38]. Following the centrifugation of the sus-
pension at 14,000 rpm for 15 min, the supernatant containing the 
extracted genome as the DNA template was transferred to a new 
microtube and stored at -20°C for later PCR.

Phylogenetic Group Assignment
The quadruplex PCR method of Clermont et al. [19] was fol-

lowed entirely for phylotyping. Based on this method, avian E. coli 
strains are classified into one of the eight phylogroups (A, B1, B2, 
C, D, E, F, or Escherichia cryptic clade I). All PCR amplifications 
were conducted on a final volume of 20 μl of the mixture, includ-
ing distilled water, master mix (Ampliqon®, Denmark), DNA tem-

pletely correlate phylogenic heterogeneity to the 
isolation source of the strains, which justifies the 
necessity for further studies.

In the present study, the E. coli isolates of the 
phylogroup B2 were all from the suspected path-
ogenic group (Figure 1) and showed the highest 
MDR (statistically insignificant; p ≥ 0.05) (Fig-
ure 3b). However, these isolates, unlike typically 
known commensal strains from the phylogroup 
B1, harboured the lowest virulence and resistance 
gene capacity (statistically insignificant; p ≥ 0.05) 
(Figure 4). Saha et al. [7] have also reported that 
all APEC phylogroups, including B2, obtained 
from poultry farms in Bangladesh, showed MDR. 
Moreover, enhanced virulence capacity, which 
probably occurs by acquiring virulence factors 
through horizontal gene transfer, has also been 
found previously within the non-B2 phylogroups 
of E. coli strains [13, 31, 34, 35]. Among all resist-
ance and virulence genes examined in this study, 
only two virulence genes were significantly prev-
alent (p < 0.05) within specific phylogroups, tsh 
within the phylogroup B1 and cvaA/B within the 
phylogroup C. This observation provides anoth-
er evidence for the enhanced virulence capacity 
obtained through horizontal gene transfer within 
the non-B2 phylogroups of E. coli strains. That 
is because both genes are located on the Colicin 
V (ColV) plasmid, which is detectable in most 
APEC strains and transmissible to the non-APEC 
strains [35]. Furthermore, a part of the inconsist-
ency observed between phenotypic and genotyp-
ic traits within the phylogroups B2 and B1 might 
result from the expression status of virulence and 
resistance genes, even those not investigated in 
the present research. In this sense, Amani et al. 
[1], examining the virulence and resistance gene 
panels of the isolates, encountered some strains 
with a specific antimicrobial resistance pheno-
type lacking the corresponding resistance gene. 
The authors also found the investigation of the 
virulence genes insufficient to discriminate path-
ogenic from commensal strains [1]. Overall, due 
to discrepancy between the genotypic and phe-
notypic characteristics of phylogenetic groups of 
the examined 

E. coli isolates, further comparative studies on the 
resistance and virulence properties of the phy-

logenetic groups of E. coli isolates from ostrich 
and human, especially from larger sample sizes 
and different geographical locations, are suggest-
ed.

In conclusion, the findings of this study provid-
ed understanding of the resistance and virulence 
traits of the phylogenetic groups of E. coli isolates 
from ostrich and indicated that further genotyp-
ic and phenotypic analyses on these phylogroups 
are essential.
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