Histopathologic aspects of pancreatic islet cell tumor in a dog Javad Khoshnegah^a, Hossein Nourani^b, Ali Mirshahi^a ^a Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran ^b Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran **Corresponding author**: Dr. Javad Khoshnegah Postal address: Ferdowsi University of Mashhad, Mashhad, Iran University/organization email address: khoshnegah@um.ac.ir ORCID ID: 0000-0002-7238-6868 Tel. number: +98511-38805612 **Abstract** A 12-year-old 4.3 kg intact female Terrier presented with a history of lethargy, anorexia and melena for one month. The animal was dull and depressed. Dermatologic examination revealed some focal erythematous, crusty and papulopustular lesions over the ventral abdomen. Ultrasonographic evaluation displayed abnormal parenchymal pattern of liver which -was noticed in the cranial part of the abdomen -with diffuse hepatic involvement with irregular, hypoechoic and heterogeneous ill-defined areas [a honey- comb-like echotexture]. Lateral thoracocervical radiograph showed numerous well-defined, small lytic lesions [polyostotic punched-out lesions] in the dorsal spinous process of axis bone in C2-C5 and pelvis that were likely metastatic lesions. In spite of hospitalization and treatment, the dog died after 2 weeks and necropsy was performed. At postmortem examination, a 5-cm mass was observed in pancreas adjacent to duodenal loops which was finally diagnosed as a pancreatic tumor. Abnormal laboratory findings included elevated blood urea nitrogen, creatinine, cholesterol, total bilirubin, aspartate aminotransferase, alkaline phosphatase, gamma-glutamyltranspeptidase and calcium. Histopathological examination of the affected pancreas, revealed neoplastic cells which were arranged mainly as solid nests or clusters and the amounts of the tumor stroma among the cellular clusters or individual neoplastic cells were scant. According to immunohistochemical study which was positive for chromogranine A, the condition was diagnosed as pancreatic islet cell tumor. Although rare, pancreatic islet tumors should be included in the differential diagnosis of abdominal discomforts, pancreatic inflammation and hepatopathies. Final diagnosis of the tumor is achieved by combining imaging techniques and advanced histopathologic evaluations. **Key words**: Tumor, Pancreatic islet cell tumor, Histopathology, Immunohistochemistry, Dog **Abbreviations:** **C2-C5:** Cervical vertebrae **GI:** Gastrointestinal Introduction Pancreatic endocrine tumors have been reported in various species including humans, dogs, cats and ferrets [1]. In order to diagnose the pancreatic endocrine tumors, pathologist should confirm the neuroendocrine nature of the tumor cells. These tumors have various microscopic results, and immunohistochemical staining with different kinds of markers like chromogranin A, synaptophysin and neuron-specific enolase, can usually confirm the neuroendocrine origin [2]. It can be difficult to accurately evaluate the degree of malignancy of pancreatic endocrine tumors but other features of the tumors, including local invasion and metastases to lymph nodes and distant organs, are helpful to explain their malignant nature [3]. There are different commonly recognized pancreatic endocrine tumors like gastrinomas, insulinomas, glucagonomas and somatostatinomas. Although these different types of pancreatic endocrine tumors share some clinical features and histological aspects, they differ in their pathogenesis, hormonal syndromes produced, many aspects of biological behavior and most importantly, in their response to chemotherapy and/or molecular targeted therapies. Here, we presented the histopathological appearance of a pancreatic islet cell tumor in an old Terrier dog. To the best of our knowledge, this is the first report of pancreatic tumor in Iran. ## Case report A 12-year-old female Terrier dog weighing 4.3 Kg was presented to the Ferdowsi University of Mashhad Veterinary Teaching Hospital with a history of lethargy, anorexia and melena for approximately one month. On physical examination, the animal was dull and depressed with a normal body condition score. Dermatologic examination revealed some focal erythematous, crusty and papulopustular lesions over the ventral view of the abdomen. Differential diagnoses included endocrinopathies and malignancies. Complete blood count showed 1 % nucleated red blood cell and lymphopenia (520; Reference 1000-4800). Serum biochemistry revealed elevated blood urea nitrogen (88; Reference 10-28), creatinine (3.19; Reference 0.5-1.5), cholesterol (286; Reference 135-270), total bilirubin (0.43; Reference 0.1-0.4), aspartate aminotransferase (471; Reference 23-66), alkaline phosphatase (6470; Reference 20-156), gamma-glutamyltranspeptidase (45.5; Reference 1.2-6.4) and calcium (12.40; Reference 9-11.3). Other parameters, including C-reactive protein, were within normal ranges (Table 1). Diagnostic imaging evaluations consisted of ultrasonography and radiology. Abdominal ultrasonography was performed with a 7.5 MHz linear transducer (Mindray, 6600 vet, China). Abnormal parenchymal pattern of liver was noticed in the cranial part of abdomen (Figure 1a). Diffuse hepatic involvement with irregular, hypoechoic and heterogeneous ill-defined areas (a honey- comb-like echotexture) were observed that may be due to metastatic lesions or primary neoplasia. Lateral thoracocervical radiograph showed numerous well-defined, small lytic lesions (polyostotic punched-out lesions) in the dorsal spinous process of axis bone in C2-C5 and pelvis that is likely metastatic lesions (Figure 1b). Figure 1: (a) Sagittal images of liver ultrasonography showed diffuse hepatic involvement with irregular, hypoechoic and heterogeneous ill-defined areas. (b) Lateral cervical radiograph showed numerous well-defined, small lytic lesions [punched-out lesions] in the dorsal spinous process of C2. Characteristic ultrasound features of evenly distributed hypoechoic nodular pattern, reflecting the neoplastic cells in the liver, which were consistent with the typical honeycomb pattern of superficial necrolytic dermatitis. Pancreatic mass was not detected by ultrasonography but later at necropsy a mass was detected. In spite of hospitalization and supportive treatment, the dog died after 2 weeks and necropsy was performed. At postmortem examination of the case, a 5-cm mass was observed in pancreas adjacent to duodenal loops which was finally diagnosed as pancreatic tumor. Liver was diffusely pale and had rounded margins and hepatomegaly was another prominent finding. Histopathological samples were taken from the liver and the suspected unknown mass in the pancreas and then, then fixed in 10% formalin before being embedded in paraffin. Some sections of the mass were used for immunohistochemical study for chromogranin A detection [4]. Histopathological examination of the liver revealed severe and diffuse vacuolar change of hepatocytes. Most of the affected hepatocytes had clear and swollen cytoplasm (Figure 2a). In the affected pancreas, neoplastic cells were arranged mainly as solid nests or clusters and the amounts of the tumor stroma among the cellular clusters or individual neoplastic cells were scant. Prominent and hyalinized collagenous connective tissue was observed between neoplastic region and normal exocrine acini, and also in some parts of the tumor that formed a few separated microscopic areas within the tumor. Immunohistochemical study showed that the neoplastic cells were positive for chromogranine A (Figure 2b-2d). Based on postmortem, histopathological immunohistochemical findings, the condition was diagnosed as pancreatic islet cell tumor. Figure 2: (a) Severe vacuolar change of the hepatocytes in the affected case. (b) The neoplastic region [asterisk] is separated from the exocrine pancreatic tissue by a connective tissue capsule. (c) Immunohistochemical staining is positive for chromogranine A in the neoplastic area [asterisk]. (d) Higher magnification of the positive neoplastic cells for chromogranine A. ## **Discussion** The islet cell tumors are immunohistochemically reactive for multiple hormones and can secrete different kinds of hormones including insulin, glucagon, somatostatin, pancreatic polypeptide, and gastrin, either singly or in combination [5]. Our case was a dog who was presented with concurrent skin lesions, hepatic failure and lytic bone involvement. The skin lesions are caused by degeneration of keratinocytes, resulting in epidermal edema and necrosis [6]. The precise mechanism underlying the development of skin disease in islet cell tumors remains unknown, but one of the proposed mechanisms is the occurrence of hypoaminoacidaemia, which may induce keratinocyte necrosis through epidermal protein deficiency [7]. Unfortunately, we were not able to take skin biopsy sample during the examination and necropsy of delayed diagnosis of the tumor (missing data). Although not confirmed histopathologically, the presentation of the skin lesions in the present case resemble typical skin lesions of superficial necrolytic dermatitis [6, 8]. With pancreatic tumors, the signs can be vague or nonspecific (10); signs may include loss of appetite, vomiting, watery diarrhea, lethargy, pain in the abdomen and weight loss. If the tumor has metastasized such as the bones, the clinician may notice lameness. Most of affected dogs also have a non-regenerative anemia, mild hyperglycemia, increased serum liver enzyme activities and a honeycomb-appearing liver on abdominal ultrasonography. [6, 8]. The dog presented here had a history of lethargy, anorexia and melena for approximately one month. These unremarkable signs might be due to concurrent pancreatitis, inflammation of GI tract and/or cholangiohepatitis. Laboratory abnormalities observed in the present case indicate severe hepatocellular dysfunction. A wide variety of reasons, including, for instance, metastasis of pancreatic tumor, concurrent GI disease and/or cholangiohepatis reported as reasons for these abnormal findings. Bone lesions in the present case, might be due to metastatic invasion of tumor, which was not confirmed histopathologically. Skeletal metastases including both osteolytic and osteoblastic lesions have been described. In people a prevalence range of 5 to 20 percent of these lesions has been reported [9]. Most patient have widely metastatic disease at the time of diagnosis. As emphasized in the present study, immunohistochemistry has become an essential ancillary examination for the identification and classification of this kinds of tumors. In the present case, the neoplastic cells were positive for chromogranin A, which is specific to endocrine cells. Chromogranin A, due to its primary expression throughout the neuroendocrine system, is a widely accepted biomarker for the assessment of neuro-endocrine tumors [11]. Many authors believe that the prognosis of islet cell tumors is grave, although surgical removal of a pancreatic tumor may be curative in the unlikely scenario that metastasis has not occurred [11]. Clinicians should be aware of the uncommon early manifestations of islet cell tumors. Early diagnosis allows complete surgical removal of the neoplasm and provides the only chance of a cure. Additional case studies are needed to further characterize the cytomorphologic features and clinical presentation of pancreatic islet cell tumor in dogs. ## References - Goutal MC, Brugmann BL, Ryan KA. Insulinoma in Dogs: A Review. Journal of the American Animal Hospital Association. 2012; 48: 151–163. https://doi.org/10.5326/JAAHA-MS-5745. - 2. Duan K, and Mete O. Algorithmic approach to neuroendocrine tumors in targeted biopsies: Practical applications of immunohistochemical markers. Cancer Cytopathology. 2016; 124: 871-884. https://doi.org/doi: 10.1002/cncy.21765. - 3. Halfdanarson TR, Rubin J, Farnell MB, Grant CS, Petersen GM. Pancreatic endocrine neoplasms: Epidemiology and prognosis of pancreatic endocrine tumors. Endocrine-Related Cancer.2008; 15: 409–427. https://doi.org/10.1677/ERC-07-0221 - 4. Finotello R, Marchetti V, Nesi G, Arvigo M, Baroni G, Vannozzi I, Minuto F. Pancreatic islet cell tumor secreting insulin-like growth factor type-II in a dog. Journal of Veterinary Internal Medicine. 2009); 23: 1289–1292 https://doi.org/10.1111/j.1939-1676.2009.0387.x - 5. Tetsuhidem I, Igarashim H, Jensenm RT. Pancreatic neuroendocrine tumors: clinical features, diagnosis and medical treatment: advances. Best Practice & Research: Clinical Gastroenterology. 2012; 26: 737–753. https://doi.org/10.1016/j.bpg.2012.12.003 - 6. Miller WH, Griffin CE, Campbell KL. Muller and Kirk's Small Animal Dermatology, 7th ed. 2013; P: 540-542. - 7 Mizuno T, Hiraoka H, Yoshioka C, Takeda Y, Matsukane Y, Shimoyama N, Morimoto M, Hayashi T, Okuda M. Superficial necrolytic dermatitis associated with extrapancreatic glucagonoma in a dog. Veterinary Dermatology. 2009 20 (1): 72-79. https://doi.org/10.1111/j.1365-3164.2008.00729.x. - 8. Gross TL, Song, MD, Havel PJ, Ihrke PJ. Superficial necrolytic dermatitis (necrolytic migratory erythema) in dogs. Veterinary Pathology. 1993; 30, 75-81. https://doi.org/10.1177/030098589303000110. - 9. Borad MJ, Saadati H, Lakshmipathy A, Campbell E, Hopper P, Jameson G, Von Hoff DD, Saifc MW. Skeletal metastases in pancreatic cancer: A retrospective study and review of the literature. Yale Journal of Biology and Medicine. 2009; 82: 1–6. - 10- Cruz Cardona JA, Wamsley HL, Farina LL, Kiupel M. Metastatic pancreatic polypeptide-secreting islet cell tumor in a dog. Veterinary Clinical Pathology . 2010; 39(3): 371-376. https://doi.org/10.1111/j.1939-165X.2010.00243.x. - 11. Bennett PF, Hahn KA, Toal RL, Legendre AM. Ultrasonographic and cytopathological diagnosis of exocrine pancreatic carcinoma in the dog and cat. Journal of the American Animal Hospital Association. 2001; 37: 466-473. https://doi.org/10.5326/15473317-37-5-466 12- Gkolfinopoulos S, Tsapakidis K, Papadimitriou K, Papamichael D, Kountourakis P. Chromogranin A as a valid marker in oncology: Clinical application or false hopes? World Journl of Methodology. 2017; 26; 7(1): 9–15. https://doi.org/10.5662/wjm.v7.i1.9 Table 1: Hematological and biochemical findings of the patient. Table1: Haematological findings | Hematologic findings | patient | Reference values ^a | |--|---------|-------------------------------| | Hematocrit (%) | 39 | 36-60 | | Hemoglobin (g/dl) | 12.2 | 12.1-20.3 | | Red Blood Cell (×10 ⁶ μl) | 6.3 | 4.8-9.3 | | MCV (fl) | 63 | 58-79 | | MCH (pg) | 28 | 19-28 | | MCHC (g/dl) | 37 | 30-38 | | Platelets(×10 ³ μl) | 225 | 170-400 | | White blood cells (×10 ³ μl) | 11050 | 6.02-16.02 | | Mature neutrophils (×10 ³ μl) | 9750 | 2060-10600 | | Bnad neutrophils (×10 ³ µl) | 0 | 0-300 | | Lymphocytes(×10 ³ μl) | 550 | 690-4500 | | Monocytes (×10 ³ μl) | 100 | 0-840 | | Eosinophils (×10 ³ µl) | 650 | 0-1200 | | Basophils (×10³μl) | 0 | 0-150 | | | | | James K. Klaassen, Reference Values in Veterinary Medicine LABORATORY MEDICINE VOLUME 30, NUMBER 3 MARCH 1999 Table2: Serum biochemistry results | Biochemistry findings | patient | Reference values ^a | |-----------------------------------|---------|-------------------------------| | Total protein (g/dl) | 7.5 | 5-7.4 | | Albumin (g/dl) | 3.1 | 2.7-4.4 | | BUN (mg/dl) | 88 | 4-27 | | Creatnine (mg/dl) | 3.19 | 0.5-1.6 | | Glucose (mg/dl) | 135 | 70-138 | | Cholestrol (mg/dl) | 286 | 92-328 | | Bilirubin Total (mg/dl) | 0.43 | 0.1-0.3 | | Alkaline phosphatase (IU/L) | 6470 | 5-131 | | Alanine aminotransferase (IU/L) | 156 | 12-118 | | Aspartate aminotransferase (IU/L) | 471 | 15-66 | | Gamma-glutamyltranspeptidase | 45.5 | 1.2-6.4 | | Calcium | 12.4 | 9-11.3 | | Creatinine kinase (IU/L) | 78 | 59-895 | ## شرح هیستوپاتولوژیک یک مورد تومور یاختههای جزایر درون ریز پانکراس در یک قلاده سگ جواد خوش نگاه 1 ، حسین نورانی 2 و علی میرشاهی 1 - 1- گروه علوم درمانگاهی، دانشکده دامپزشکی، دانشگاه فردوسی مشهد - 2- گروه پاتوبیولوژی، دانشکده دامپزشکی، دانشگاه فردوسی مشهد یک قلادہ سگ تریر 12 سالہ مادہ عقیم با وزن 4.3 کیلوگرم با شکایت تظاہرات جلدی روی شکم، بی حالی، بی اشتهایی، کاهش وزن و ملنا در یک ماه گذشته، به بیمارستان آموزشی ما ارجاع داده شد. در معاینه فیزیکی، حیوان بی حال، افسرده و دارای نمره توده بدنی طبیعی بود. در ارزیابی درماتولوژیک جراحات جلدی اریتماتوز، دلمه ای و پاپولوپوستولار روی شکم بیمار دیده شدند. بررسی اولتراسونو گرافی نشان دهنده الگوی پارانشیمی غیرطبیعی کبد به صورت نواحی نامنظم هایپواکوژن و هتروژن پر از هوا بود. در رادیو گرافی جانبی، شمار زیادی ضایعات پلی اُستو تیک پانچی در زائده خاری مهره های گردنی شماره 2 تا 5 و در لگن مشاهده شد که احتمالاً ضایعات متاستاتیک بودهاند. به رغم درمان، بیمار زنده نماند و نکروپسی انجام شد. در کالبدگشایی، یک توده 5 سانتی متری در پانکراس در کنار لوپهای دوازدهه مشاهده شد که نهایتاً تومور پانکراس تشخیص داده شد. یافتههای آزمایشگاهی غیرطبیعی عبارت بودند از افزایش اوره، کراتینین، کلسترول، بیلی روبین تام، آنزیمهای کبدی، گاما گلوتامیل تراتسفراز و کلسیم. اندازه کبد بزرگ شده و به طور وسیع رنگ پریده با لبه های گرد بود. بررسی هیستوپاتولوژیک کبد نشان دهنده تغییرات واکوئلار وسیع هپاتوسیتها بود. در پانکراس در گیر، سلول های توموری بیشتر بصورت توده های سلولی توپور آرایش پیدا کرده بودند و مقدار استرومای تومور در بین توده های یاخته های توموری و یاخته های منفرد بسیار کم بود. بافت همبند کلاژنه هیالینه و مشخص بین ناحیه توموری و آسینی های طبیعی بخش برون ریز و همچنین در برخی بخش های تومور مشاهده شد که تعدادی کانون میکروسکوپی مجزا در داخل تومور تشکیل داده بود. ارزیابی ایمونوهیستوشیمی نشان داد که یاخته های سرطانی برای رنگ کرومو گرانین A مثبت هستند. بر مبنای یافته های کالبدگشایی، هیستوپاتولوژی و ایمونوهیستوشیمی، عارضه بیمار، تومور یاخته های بخش درون ریز پانکراس تشخیص داده شد. گرچه این نوع تومور نادر است ولی لازم است در فهرست تشخیصهای افتراقی مشکلات ناحیهٔ شکم، التهاب پانکراس و مشکلات کبدی جای گیرد. تشخیص نهایی نوع تومور با بهره گیری از روش های پیشرفته تصویر برداری و ارزیابی هیستویاتولوژیک صورت می گیرد. واژگان کلیدی: تومور، تومور پانکراس، هیستوپاتولوژی، ایمونوهیستوشیمی، سگ