Errata

Document Type : Erratum

Author

Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

The Iranian Journal of Veterinary Science and Technology publishes corrections when they are of significance to patient care, scientific data or record-keeping, or authorship, whether that error was made by an author, editor, or staff during processing of the article. Errata also appear in the online version and are attached to files downloaded from ijvst.um.ac.ir. (More information on: https://publicationethics.org/case/corrigendum-or-erratum)

In the article entitled “Therapeutic Effects of ADU-S100 as STING Agonist and CpG ODN1826 as TLR9 Agonist in CT-26 Model of Colon Carcinoma” by Sare Hajiabadi; Soodeh Alidadi; Mohammad Mehdi Ghahramani Senoo; Zohreh Montakhab Farahi; Hamid Reza Farzin; Alireza Haghparast, which had appeared in Vol.15. No.2, 2023/ doi:10.22067/ijvst.2023.80505.1223, there was an error on page 36. Specifically, in the acknowledgement section, the sentence that had been read “Financial support was also received from the Iranian Biotechnology Initiative Council” should have been read “Financial support was also received from Iran National Science Foundation (INSF)”.

1.    Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med. 2015;372(4):311-9. Doi:10.1056/NEJMoa1411087.
2.    Fay EK, Graff JN. Immunotherapy in Prostate Cancer. Cancers. 2020;12(7):1752. Doi: 10.3390/cancers12071752.
3.    Banstola A, Jeong J-H, Yook S. Immunoadjuvants for cancer immunotherapy: A review of recent developments. Acta Biomaterialia. 2020; 114:16-30. Doi: 10.1016/j.actbio.2020.07.063
4.    Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov. 2006;5(6):471-84. Doi: 10.1038/nrd2059.
5.    Yu C, An M, Li M, Liu H. Immunostimulatory Properties of Lipid Modified CpG Oligonucleotides. Mol Pharm. 2017;14(8):2815-23. Doi:10.1021/acs.molpharmaceut.7b00335.
6.    Krieg AM. Development of TLR9 agonists for cancer therapy. J Clin Invest. 2007;117(5):1184-94. Doi: 10.1172/JCI31414.
7.    Sierra H, Cordova M, Chen CJ, Rajadhyaksha M. Confocal imaging-guided laser ablation of basal cell carcinomas: an ex vivo study. J Invest Dermatol. 2015;135(2):612-5. Doi: 10.1038/jid.2014.371.
8.    Krieg AM. Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene. 2008;27(2):161-7. Doi: 10.1038/sj.onc.1210911.
9.    Corrales L, Gajewski TF. Molecular Pathways: Targeting the Stimulator of Interferon Genes (STING) in the Immunotherapy of Cancer. Clin Cancer Res. 2015;21(21):4774-9. Doi: 10.1158/1078-0432.CCR-15-1362.
10.    Levy ES, Chang R, Zamecnik CR, Dhariwala MO, Fong L, Desai TA. Multi-Immune Agonist Nanoparticle Therapy Stimulates Type I Interferons to Activate Antigen-Presenting Cells and Induce Antigen-Specific Antitumor Immunity. Mol Pharm. 2021;18(3):1014-25. Doi: 10.1021/acs.molpharmaceut.0c00984.
11.    Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE, Katibah GE, et al. Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity. Cell Rep. 2015;11(7):1018-30. Doi: 10.1016/j.celrep.2015.04.031.
12.    Sallets A, Robinson S, Kardosh A, Levy R. Enhancing immunotherapy of STING agonist for lymphoma in preclinical models. Blood Adv. 2018;2(17):2230-41. Doi: 10.1182/bloodadvances.2018020040.
13.    Ohkuri T, Ghosh A, Kosaka A, Zhu J, Ikeura M, David M, et al. STING contributes to antiglioma immunity via triggering type I IFN signals in the tumor microenvironment. Cancer Immunol Res. 2014;2(12):1199-208. Doi: 10.1158/2326-6066.CIR-14-0099.
14.    Corrales L, Gajewski TF. Endogenous and pharmacologic targeting of the STING pathway in cancer immunotherapy. Cytokine. 2016; 77: 245-7. Doi: 10.1016/j.cyto.2015.08.258.
15.    Bai G, Yu H, Guan X, Zeng F, Liu X, Chen B, et al. CpG immunostimulatory oligodeoxynucleotide 1826 as a novel nasal ODN adjuvant enhanced the protective efficacy of the periodontitis gene vaccine in a periodontitis model in SD rats. BMC Oral Health. 2021;21(1):403. Doi: 10.1186/s12903-021-01763-1.
16.    Corrales L, McWhirter SM, Dubensky TW, Jr., Gajewski TF. The host STING pathway at the interface of cancer and immunity. J Clin Invest. 2016;126(7):2404-11. Doi: 10.1172/JCI86892.
17.    Savitsky D, Tamura T, Yanai H, Taniguchi T. Regulation of immunity and oncogenesis by the IRF transcription factor family. Cancer Immunol Immunother. 2010;59(4):489-510. Doi: 10.1007/s00262-009-0804-6.
18.    Mocellin S, Nitti D. Therapeutics targeting tumor immune escape: towards the development of new generation anticancer vaccines. Med Res Rev. 2008;28(3):413-44. Doi: 10.1002/med.20110.
19.    Woo SR, Corrales L, Gajewski TF. Innate immune recognition of cancer. Annu Rev Immunol. 2015; 33: 445-74. Doi: 10.1146/annurev-immunol-032414-112043.
20.    Li T, Cheng H, Yuan H, Xu Q, Shu C, Zhang Y, et al. Antitumor Activity of cGAMP via Stimulation of cGAS-cGAMP-STING-IRF3 Mediated Innate Immune Response. Sci Rep. 2016; 6: 19049. Doi: 10.1038/srep19049.
21.    Demaria O, De Gassart A, Coso S, Gestermann N, Di Domizio J, Flatz L, et al. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc Natl Acad Sci U S A. 2015;112(50):15408-13. Doi: 10.1073/pnas.1512832112.
22.    Wang Z, Celis E. STING activator c-di-GMP enhances the anti-tumor effects of peptide vaccines in melanoma-bearing mice. Cancer Immunol Immunother. 2015;64(8):1057-66. Doi: 10.1007/s00262-015-1713-5.
23.    Tang CH, Zundell JA, Ranatunga S, Lin C, Nefedova Y, Del Valle JR, et al. Agonist-Mediated Activation of STING Induces Apoptosis in Malignant B Cells. Cancer Res. 2016;76(8):2137-52. Doi: 10.1158/0008-5472.CAN-15-1885.
24.    Huang L, Ge X, Liu Y, Li H, Zhang Z. The Role of Toll-like Receptor Agonists and Their Nanomedicines for Tumor Immunotherapy. Pharmaceutics. 2022;14(6). Doi: 10.3390/pharmaceutics14061228.
25.    Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, et al. STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors. Immunity. 2014;41(5):843-52. Doi: 10.1016/j.immuni.2014.10.019.
26.    Temizoz B, Kuroda E, Ohata K, Jounai N, Ozasa K, Kobiyama K, et al. TLR9 and STING agonists synergistically induce innate and adaptive type-II IFN. Eur J Immunol. 2015;45(4):1159-69. Doi: 10.1002/eji.201445132.
27.    Temizoz B, Hioki K, Kobari S, Jounai N, Kusakabe T, Lee MSJ, et al. Anti-tumor immunity by transcriptional synergy between TLR9 and STING activation. Int Immunol. 2022;34(7):353-64. Doi: 10.1093/intimm/dxac012.
28.    Cai L, Du X, Zhang C, Yu S, Liu L, Zhao J, et al. Robust immune response stimulated by in situ injection of CpG/αOX40/cGAMP in αPD-1-resistant malignancy. Cancer Immunol Immunother. 2022;71(7):1597-609. Doi: 10.1007/s00262-021-03095-z.
29.    Dorostkar F, Arashkia A, Roohvand F, Shoja Z, Navari M, Mashhadi Abolghasem Shirazi M, et al. Co-administration of 2'3'-cGAMP STING activator and CpG-C adjuvants with a mutated form of HPV 16 E7 protein leads to tumor growth inhibition in the mouse model. Infect Agent Cancer. 2021;16(1):7. Doi: 10.1186/s13027-021-00346-7.
30.    Kitayama J, Yasuda K, Kawai K, Sunami E, Nagawa H. Circulating lymphocyte is an important determinant of the effectiveness of preoperative radiotherapy in advanced rectal cancer. BMC Cancer. 2011;11: 64. Doi: 10.1186/1471-2407-11-64.
31.    Seth A, Lee H, Cho MY, Park C, Korm S, Lee JY, et al. Combining vasculature disrupting agent and Toll-like receptor 7/8 agonist for cancer therapy. Oncotarget. 2017;8(3):5371-81. Doi: 10.18632/oncotarget.14260.
32.    Luo M, Liu Z, Zhang X, Han C, Samandi LZ, Dong C, et al. Synergistic STING activation by PC7A nanovaccine and ionizing radiation improves cancer immunotherapy. J Control Release. 2019; 300: 154-60. Doi: 10.1016/j.jconrel.2019.02.036.
CAPTCHA Image