Enhancing analgesic effects of lidocaine in rabbit epidural analgesia using metoclopramide or tramadol

Azin Tavakoli1*, Hossein Kazemi-Mehrjerdi2

1Department of Clinical Sciences, Islamic Azad University, Garmsar Branch, Garmsar, Iran
2Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

Received: October 2, 2011 Accepted: January 22, 2012

Abstract
The objective of the present experience was to study the effects of metoclopramide and tramadol on epidural analgesia induced by lidocaine in rabbits. Fifteen healthy New Zealand White rabbits weighting 3-3.5 kg of both genders were used. Animals were divided randomly into three groups. Three different combinations of drugs were injected into the epidural space to induce epidural analgesia in the following order: group A 2% lidocaine (1.5 ml), group B the combination of 2% lidocaine (1.5 ml) and metoclopramide (0.5 ml) and group C, the combination of 2% lidocaine (1.5 ml) and tramadol (0.2 ml). The procedure was repeated 48 hours and a week after the first injection. The onset time of analgesia (OT), duration of flaccid paresis (DFP) and duration of analgesia (DA) was determined in all treatments. There was no complication in the induction of epidural analgesia. Statistical analysis showed that mean of OT in group C (15.7±4.2 sec), was significantly lower in comparison to group A (68.6±15.5 sec) and group B (45.8±17.1 sec)(p=0.004). Mean DFP was significantly higher in group C (35.9±10.5 min) in comparison to group A (18.3±5.2 min) and group B (29.2±11.5 min)(p = 0.001). Mean of DA was significantly higher in group B (39.1±16.2 min) compared to group A (23.6±5.5 min)(p=0.018) and also in group C (48.9±10.7 min) compared to group A (p =0.00). But there was no significant difference between means of DA in group B and C (p =0.05). The present study indicates that addition of metoclopramide and tramadol to lidocaine is effective in prolongation of epidural analgesia in rabbit.

Keywords: epidural analgesia, lidocaine, metoclopramide, tramadol, rabbit

*Corresponding Author: Azin Tavakoli
Email: azin.tavakoli@gmail.com
Introduction

Epidural analgesia, a form of regional anesthesia, is an effective route to produce loss of pain and sensation by injecting drugs into the epidural space. It is probably the most useful method to control post-operative pain after an abdominal surgery (Gürses et al., 2003). After lidocaine was introduced in veterinary practice in 1944, it became a popular drug to induce epidural analgesia. Since then a variety of drugs and their combinations have been reported in human and veterinary literature to induce epidural analgesia alone or adjunct to other methods of anesthesia for abdominal and perineal surgeries, obstetric manipulations and cesarean section, tail amputation and rear limb surgeries. It is also used to produce post-operative analgesia and relieve pain in patients with chronic pain. In spite of described advantages of epidural analgesia, it is not widely used in small animal practice. This may be due to the fact that some surgeons are not fully familiar with the technique or they prefer one venous puncture to induce analgesia (Hall and Clarke, 2001, Johnston, 2005).

Administration of opioids is one of the most common techniques to produce epidural analgesia (Gürses et al., 2003). A central acting synthesized opioid called tramadol HCl, is widely used for the management of moderate to moderately severe pain and for long-term treatment of chronic pain in continuous epidural block keep. Like other opioids, it is also used to produce preemptive and post-operative analgesia in epidural route as well (Gürses et al., 2003, Hall and Clarke, 2001). In clinical studies, successful epidural analgesia by administration of other non-opioid drugs like ketamine, deroperidol, clonidine, xylazine and metoclopramide have been stated (Gürses et al., 2003, Armand et al., 1998, Tsai et al., 2001, Olschewski et al., 2000). There are many reports describing analgesic effects of metoclopramide, a potent dopamine receptor antagonist, that is primarily used to treat nausea and vomiting. Significant analgesic properties of metoclopramide have been demonstrated by many authors since 1986 (Ramawamy and Bapna, 1986). Also its analgesic effects have been described in specific surgeries like prosthetic hip surgery and knee arthroscopy (Ramawamy and Bapna, 1986, Lisander and Kandler, 1993, Lisander, 1993, Rosenblatt et al., 1991, Cicik et al., 2004). Derbent in 2005 showed that pre-operative administration of metoclopramide provided post-operative analgesia in patients undergoing elective laminectomy (Derbent et al., 2005).

Although some hypotheses are existed for analgesic properties of metoclopramide, its mechanism of action has not been determined yet (Kurtipek et al., 1999, Hedenbro and Olsson, 1988). At present, there is no ideal drug or combination of drugs for postoperative epidural analgesia (Gürses et al., 2003).

Since limitations exist for prescribing opioids; use of other analgesic drugs seems valuable. Therefore the present experimental animal modeling was conducted to study effects of metoclopramide and tramadol on epidural analgesia induced by lidocaine in rabbits.

Materials and methods

Fifteen adult and healthy New Zealand White rabbits weighting 3-3.5 kg of both genders randomly were divided into three groups. All experimental procedures were performed after approval received by the University Research Committee in accordance with the guidelines of its Institutional Animal Experimentation Ethics Committee. After aseptic preparation epidural injection was performed thorough the deepest area felt in lumbosacral (L-S) junction via a 50 mm, 20 gauge epidural needle. The hind legs of the rabbits were flexed to allow maximal opening of the lumbosacral space. The procedure for lumbosacral epidural puncture in rabbits is similar to the described procedure in literature for dogs and cats (Gaynor and Mama, 2002). Hanging drop technique was used to realize
that the needle is located into the epidural space. However before starting the project, the exact site of epidural injection was observed in a cadaver. In group A, 1.5 ml lidocaine (2%, Iran-Teb) was used to induce epidural analgesia. In group B the combination of 1.5 ml lidocaine and 0.5 ml metoclopramide HCl (0.5%, Tehran-Chimie) and in group C, the combination of 1.5 ml lidocaine and 0.2 ml tramadol (5%, Tehran-Chimie) was used to induce epidural analgesia. The same procedure was performed 48 hours and a week later in all rabbits. The onset time of analgesia (OT) (time measured between injection of the drug and dropping down of the tail), duration of flaccid paresis (DFP) (time measured between injection of drug and starting to walk in rabbits) and duration of analgesia (DA) (time measured between injection of the drug and returning sense of pain in tail and both hind limbs) were measured in all treatments in group A, B and C. One week after the last injection microscopic sections were obtained from all spinal cords of the subjects to study the possibility of histological changes of the tissues from 2 cm proximal and distal of the sites of injection.

Mean of the measured variables were compared among groups and between injections using between-groups and within-groups (repeated measure) analysis of variances (ANOVA). Then Bonferroni test was performed for pair wise comparison between means. The p values less than 0.05 were considered statistically significant.

Results

The results are illustrated in table 1. Statistical analysis indicated that there was not a significant difference among means of OT, DFP and DA in first, second and third injection (p>0.05).

The results showed that there were significant differences between means of OT (p=0.004) in group A (68.6±15.5 sec) and B (45.8±17.1 sec) versus C (15.7±4.2 sec) which was significantly shorter. The latency of onset of analgesia was not changed by adding metoclopramide to lidocaine.

There was a significant difference between means of DFP (p=0.001) and means of DA (p=0.00) among groups. Mean of DFP was significantly longer in group C (35.9±10.5 min) (p<0.05) in comparison to group A (18.3±5.2 min) and group B (29.2±11.5). Mean of DA was significantly longer (p=0.018) in group B (39.1±16.2 min) compared to group A (23.6±5.5 min). Also mean of DA was significantly longer (p=0.00) in group C (48.9±10.7 min) compared to group A. No complication occurred during induction of epidural analgesia in the rabbits. Microscopic evaluations revealed no pathologic changes, atrophy or signs of inflammation following the injections in all groups (Fig. 1).

<table>
<thead>
<tr>
<th></th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2% Lidocaine</td>
<td>Combination of 2% lidocaine and</td>
<td>Combination of 2% lidocaine and tramadol</td>
</tr>
<tr>
<td>Onset time (sec)</td>
<td>68.6±15.5</td>
<td>45.8±17.1</td>
<td>15.7±4.2</td>
</tr>
<tr>
<td>Duration of flaccid paresis (min)</td>
<td>18.3±5.2</td>
<td>29.2±11.5</td>
<td>35.9±10.5</td>
</tr>
<tr>
<td>Duration of analgesia (min)</td>
<td>23.6±5.5</td>
<td>39.1±16.2</td>
<td>48.9±10.7</td>
</tr>
</tbody>
</table>

The measured variables in groups with the common superscripts were not significantly different from each other at the 0.05 significance level.

* Significantly different from other groups.
Discussion

Epidural analgesia can be performed in several surgical and painful procedures in addition of the ability to produce post-operative analgesia and continuous pain relief in patients with chronic pain such as patients with advanced stage of cancers, intervertebral disk or neurologic problems. Rabbit was used in the present experiment because reports showed that rabbit is a suitable model for inducing epidural block and evaluating sensory and motor loss under standardized experimental conditions (Johnston, 2005, Malinovsky et al., 1997). The procedure for lumbosacral epidural puncture in ferrets and rabbits is similar to that described in literature for dogs and cats, except that there is rarely a definitive popping sensation when the intervertebral ligaments are punctured at the time of entry into the epidural space (Gaynor and Mamma, 2002). We did not encounter a problem during performing epidural analgesia, because the method was examined in pilot models and the injection site was carefully detected in cadaver.

Mean onset time of analgesia was significantly shorter when the combination of tramadol and 2% lidocaine was used in group C ($p=0.004$). Although mean onset time of analgesia was longer in the combination of metoclopramide and 2% lidocaine in group B (45.8±17.1sec) it was not significantly different from the one of 2% lidocainethat used alone ($p>0.05$). This indicates that tramadol speeds up the onset time of analgesia, but metoclopramide does not have the ability of shortening the onset time of analgesia in epidural injection. Previous report by Komoda indicated that the addition of deoxyaconitine, a traditional drug used to alleviate pain which is an opioid agonist, to lidocaine in epidural analgesia does not change the latency of onset time of analgesia in rabbits (Komoda et al., 2003). But our findings indicate that tramadol, an opioid drug, can speed up the onset time of analgesia, but metoclopramide does not have the ability of lowering the onset time of analgesia in epidural injection. Our findings were not in agreement with their results.
Duration of flaccid paresis was significantly longer in group C in comparison to group A and B (p<0.05), in spite of higher mean of DFP when combination of metoclopramide and 2% lidocaine was used (Table. 1). This indicated that metoclopramide may have less or even no motor block properties versus tramadol. A synergism was reported in the epidural space between lidocaine and opioids, and their combination can decrease side effects of each individual drug (Hall and Clarke, 2001, Wang et al., 1993). However the risk of respiratory depression increases with repeated and continuous administration of epidural opioids, tramadol may be advantageous because of a low risk of respiratory depression (Delikan and Vijayan, 1993, Baraka et al., 1993). There are reports of other combinations with lidocaine that can improve its motor block activities. Doherty et al. reported that ionic complexes of local anesthetics such as lidocaine with medium molecular weight hyaluronic acid formulations can prolong loss of weight bearing twofold in local anesthesia in rabbit (Doherty et al., 1995). Komoda et al. reported 60% extension of duration of flaccid paresis by addition of deoxaconitine to lidocaine in comparison to lidocaine alone (Komoda et al., 2003).

Means of duration of analgesia were significantly increased whether metoclopramide (p=0.018) or tramadol (p=0.00) was added to 2% lidocaine. There was no significant difference between prolongation of analgesia when tramadol or metoclopramide was added to 2% lidocaine (p>0.05). This highlights analgesic effects of metoclopramide as previously illustrated. Although the analgesic properties of the popular anti-emetic, metoclopramide, have been demonstrated since several years ago, it’s mechanism of action is still controversial (Ramaswamy and Bapna, 1986, Cicek et al., 2004). There are some reports that show its analgesic effect was reduced by naloxone suggesting an opioid involvement of metoclopramide (Ramaswamy and Bapna, 1986). However it did not alter the antinociceptive effects of morphine. This suggests a lack of interaction between opioids and metoclopramide (Ung et al., 2008). Also there are reports of a relationship between serum levels of prolactin and analgesia produced by metoclopramide (Lisander, 1993, Kutripek et al., 1999). In 1992 Ganta et al., reported the equal analgesic effects of lidocaine and metoclopramide in prevention of pain caused by the injection of propofol (Ganta and Fee, 1992). No pathologic changes were reported during repetitive epidural injection of metoclopramide in rabbits by Kutripek in 1999. This finding is consistent with the findings of the present study (Kutripek et al., 1999). Since no significant damage was observed in microscopic evaluations of the spinal cords, the drugs can be used safe to induce epidural analgesia.

It is concluded that the addition of tramadol to lidocaine in epidural analgesia induced in rabbit not only speeds up the onset time of analgesia, but also prolongs the duration of flaccid paresis and analgesia. Metoclopramide, a frequently antiemetic prescribed, can extend the duration of epidural analgesia induced by lidocaine in comparison to lidocaine alone. Nevertheless no evidence was found to indicate whether its addition to lidocaine can also prolong the duration of flaccid paresis.

References

Cicek, M., Karcioğlu, O., Parlak, I., Ozturk, V.,

Tsai, Y.C., Chang, P.J. and Jou, I.M. (2001) Direct tramadol application on sciatic nerve inhibits spinal somatosensory

افزودن اثرات بیحس کننده ایپیدورال لیدوکااین در خرگوش بوسیله متکولپرامید

یا ترامادول

آمن توکی، هسین کاظمی مهرجردی

گروه علوم درمانگاهی، دانشکده دامپزشکی دانشگاه آزاد اسلامی واحد گرمسار، ایران
گروه علوم درمانگاهی، دانشکده دامپزشکی دانشگاه فردوسی مشهد، ایران

پذیرش نهایی: 1390/11/2

چکیده

در این مطالعه اثرات افزودن متکولپرامید و ترامادول به لیدوکاین در بیحس ایپیدورال در خرگوش مورد بررسی قرار گرفت. پایان‌دهنده خرگوش نیوزیلند سفید بیا متوسط وزنی 3/25 کیلوگرم از هر دو جنس نر و ماده انتخاب شد. حیوانات به طور تصادفی به سه گروه تقسیم گردیدند. سه ترکیب دارویی مختلف به داخل فضای ایپیدورال جهت انجام بیحس ایپیدورال تزریق شد، در گروه A لیدوکاین 2 درصد (0/5٪) و در گروه B لیدوکاین 2 درصد (0/5٪) و متوکولپرامید (0/5٪) و در گروه C ترکیب لیدوکاین 2 درصد (0/5٪) و متوکولپرامید (0/5٪) گردید. در این گروه‌ها در نظر گرفته شد که شروع آزمایش‌ها بعد از اولین تزریق نادرست کند. شروع پی چسب، متوسط فلچه و شغل انداز حزب خلقی و طول مدت بی درد در تمام گروه‌ها مورد ارزیابی قرار گرفت. بعد از تزریق داروی بیحس به داخل فضای ایپیدورال هیچ عارضه ی چنانی دیده نشد. مطالعات آماری نشان داد که شروع آزمایش بین درد در گروه C (p=0/001) با طور معنی‌داری کمتر از گروه A (p=0/001) و گروه B (p=0/001) بود. فلچه و شغل انداز حزب خلقی به طور قابل ملاحظه‌ای در گروه C (p=0/001) و گروه B (p=0/001) نسبت به گروه A (p=0/001) معنی‌دار بود. در نظر گرفتن ترتیب درد در گروه C (p=0/001) و گروه B (p=0/001) بی‌درد بین گروه B و C ملاحظه گردید. افزودن متکولپرامید و ترامادول به لیدوکاین در بیحس ایپیدورال باعث افزایش طول مدت بی دردی در خرگوش‌ها می‌شد.